Skip to main content
Log in

Electronic effects of substituents on the reactivity of silenes: a computational analysis

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Computational analysis has been carried out to understand the electronic effect of substituents on the reactivity of silenes. Three types of reactions, viz., (i) dimerization of silenes, (ii) small molecule activation (NH3 and NO), and (iii) isomerization of silene to silylene, were taken for the analysis using monosubstituted silenes (RHC = SiH2 and H2C = SiRH) and disubstituted silene (HRC = SiRH) with substituents –CH3, –SiH3, –OH, –CN, and –F. It is found that the position of the substituent is decisive in C-Si bond polarity as well as the reactivity of silenes. The dimerization of silenes prefers the diradical pathway, and the presence of π-donating substituents gives a better stabilization of the free energy profile. The N–H and N–O activation by silenes forms thermodynamically stable adducts, hinting at the unexplored potential of silenes in small molecule activation. Thermodynamic and kinetic feasibility of the isomerization of silenes to silylenes can also be achieved by the introduction of π-donating substituents. The present analysis suggests that the chemical reactivity of silenes can be significantly controlled by the fine tuning of the electronic effects of substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Cartesian coordinates of all structures, isodesmic reaction schemes, and the results at the PW6B95D3/6–311 +  + G(d,p) calculations are available in the Supplementary Materials section.

Code availability

Not applicable.

References

  1. Gusel’Nikov LE, Flowers MC (1967) The thermal decomposition of 1,1-dimethyl-1-silacyclobutane and some reactions of an unstable intermediate containing a silicon–carbon double bond. Chem Commun (London) 864–865. https://doi.org/10.1039/C19670000864

  2. Brook AG, Nyburg SC, Abdesaken F et al (1982) Stable solid silaethylenes. J Am Chem Soc 104:5667–5672. https://doi.org/10.1021/ja00385a019

    Article  CAS  Google Scholar 

  3. Brook AG, Krishna R, Kallury MR, Poon YC (1982) Attempted stabilization of silaethylenes with aryl or trifluoromethyl groups. Organometallics 1:987–994. https://doi.org/10.1021/om00067a017

    Article  CAS  Google Scholar 

  4. Brook AG, Abdesaken F, Gutekunst B et al (1981) A solid silaethene: isolation and characterization. J Chem Soc Chem Commun 191. https://doi.org/10.1039/c39810000191

  5. Brook AG, Harris JW, Lennon J, El Sheikh M (1979) Relatively stable silaethylenes. Photolysis of acylpolysilanes. J Am Chem Soc 101:83–95. https://doi.org/10.1021/ja00495a015

    Article  CAS  Google Scholar 

  6. Apeloig Y, Karni M (1984) Substituent effects of the carbon-silicon double bond. monosubstituted silenes. J Am Chem Soc 106:6676–6682. https://doi.org/10.1021/ja00334a036

    Article  CAS  Google Scholar 

  7. Bendikov M, Quadt SR, Rabin O, Apeloig Y (2002) Addition of nucleophiles to silenes. A theoretical study of the effect of substituents on their kinetic stability. Organometallics 21:3930–3939. https://doi.org/10.1021/om0202571

    Article  CAS  Google Scholar 

  8. El-Sayed I, Guliashvili T, Hazell R et al (2002) Evidence for formation of silenes strongly influenced by reversed Si=C bond polarity. Org Lett 4:1915–1918. https://doi.org/10.1021/ol025920w

    Article  PubMed  CAS  Google Scholar 

  9. El-Nahas AM, Johansson M, Ottosson H (2003) Reverse Si=C bond polarization as a means for stabilization of silabenzenes: a computational investigation. Organometallics 22:5556–5566. https://doi.org/10.1021/om030417o

    Article  CAS  Google Scholar 

  10. Leigh WJ, Boukherroub R, Kerst C (1998) Substituent effects on the reactivity of the silicon−carbon double bond. resonance, inductive, and steric effects of substituents at silicon on the reactivity of simple 1-methylsilenes. J Am Chem Soc 120:9504–9512. https://doi.org/10.1021/ja981435d

    Article  CAS  Google Scholar 

  11. Morkin TL, Leigh WJ (2001) Substituent effects on the reactivity of the silicon−carbon double bond. Acc Chem Res 34:129–136. https://doi.org/10.1021/ar960252y

    Article  PubMed  CAS  Google Scholar 

  12. Bradaric CJ, Leigh WJ (1997) Substituent effects on the reactivity of the silicon–carbon double bond. Arrhenius parameters for the reaction of 1,1-diarylsilenes with alcohols and acetic acid. Can J Chem 75:1393–1402. https://doi.org/10.1139/v97-167

    Article  CAS  Google Scholar 

  13. Leigh WJ, Moiseev AG, Coulais E et al (2008) Substituent effects on silene reactivity - reactive silenes from photolysis of phenylated tri- and tetrasilanes. Can J Chem 86:1105–1117. https://doi.org/10.1139/V08-165

    Article  CAS  Google Scholar 

  14. Pavelka LC, Hanson MA, Staroverov VN, Baines KM (2014) Mechanism of the addition of alkynes to silenes and germenes: a density functional study. Can J Chem 93:134–142. https://doi.org/10.1139/cjc-2014-0256

    Article  CAS  Google Scholar 

  15. Ottosson H (2003) Zwitterionic silenes: interesting goals for synthesis? Chem - A Eur J 9:4144–4155. https://doi.org/10.1002/chem.200204583

    Article  CAS  Google Scholar 

  16. Ottosson H, Eklöf AM (2008) Silenes: connectors between classical alkenes and nonclassical heavy alkenes. Coord Chem Rev 252:1287–1314. https://doi.org/10.1016/j.ccr.2007.07.005

    Article  CAS  Google Scholar 

  17. Müller T, Ziche W, Auner N (1998) Silicon–carbon and silicon–nitrogen multiply bonded compounds. In: Rappoport Z, Apeloig Y (eds) 2nd ed. John Wiley & Sons, Ltd, pp 857–1062

  18. Baines KM (2013) Brook silenes: inspiration for a generation. Chem Commun 49:6366–6369. https://doi.org/10.1039/c3cc42595a

    Article  CAS  Google Scholar 

  19. Hardwick JA, Baines KM (2011) Addition of nitriles to two brook silenes. Organometallics 30:2831–2837. https://doi.org/10.1021/om200182q

    Article  CAS  Google Scholar 

  20. Tanaka H, Shiota Y, Hori K et al (2012) Substituent effects in thermal reactions of a silene with silyl-substituted alkynes: a theoretical study. Organometallics 31:4737–4747. https://doi.org/10.1021/om300310g

    Article  CAS  Google Scholar 

  21. Takahashi M, Veszprémi T, Kira M (2004) 1,2-Addition reaction of monosubstituted disilenes: an ab initio study. Organometallics 23:5768–5778. https://doi.org/10.1021/om049418m

    Article  CAS  Google Scholar 

  22. Veszprémi T, Takahashi M, Hajgató B, Kira M (2001) The mechanism of 1,2-addition of disilene and silene. 1. Water and alcohol addition. J Am Chem Soc 123:6629–6638. https://doi.org/10.1021/ja0040823

    Article  PubMed  CAS  Google Scholar 

  23. Hajgató B, Takahashi M, Kira M, Veszprémi T (2002) The mechanism of 1,2-addition of disilene and silene: hydrogen halide addition. Chem - A Eur J 8:2126–2133. https://doi.org/10.1002/1521-3765(20020503)8:9%3c2126::AID-CHEM2126%3e3.0.CO;2-2

    Article  Google Scholar 

  24. Lee PTK, Rosenberg L (2016) Scope and selectivity of B(C6F5)3-catalyzed reactions of the disilane (Ph2SiH)2. J Organomet Chem 809:86–93. https://doi.org/10.1016/j.jorganchem.2016.02.035

    Article  CAS  Google Scholar 

  25. Sen SS, Hey J, Herbst-Irmer R et al (2011) Striking stability of a substituted silicon(II) bis(trimethylsilyl)amide and the facile Si–Me bond cleavage without a transition metal catalyst. J Am Chem Soc 133:12311–12316. https://doi.org/10.1021/ja205369h

    Article  PubMed  CAS  Google Scholar 

  26. Su B, Kostenko A, Yao S, Driess M (2020) Isolable dibenzo[a, e ]disilapentalene with a dichotomic reactivity toward CO 2. J Am Chem Soc 142:16935–16941. https://doi.org/10.1021/jacs.0c09040

    Article  PubMed  CAS  Google Scholar 

  27. Poitiers NE, Huch V, Zimmer M, Scheschkewitz D (2020) Nickel-assisted complete cleavage of CO by a silylene/siliconoid hybrid under formation of an Si-C enol ether bridge. Chem Commun 56:10898–10901. https://doi.org/10.1039/D0CC04922K

    Article  CAS  Google Scholar 

  28. Sun X, Hinz A, Kucher H et al (2022) Stereoselective Activation of Small Molecules by a Stable Chiral Silene. Chem A Eur J. https://doi.org/10.1002/chem.202201963

    Article  Google Scholar 

  29. Zborovsky L, Kostenko A, Bravo-Zhivotovskii D, Apeloig Y (2019) Mechanism of the thermal Z⇌E isomerization of a stable silene; experiment and theory. Angew Chemie 131:14666–14670. https://doi.org/10.1002/ange.201907864

    Article  Google Scholar 

  30. Jabłoński M, Krygowski TM (2020) Changes in electron structure of the triple bond in substituted acetylene and diacetylene derivatives. ChemPhysChem 21:1847–1857. https://doi.org/10.1002/cphc.202000378

    Article  PubMed  CAS  Google Scholar 

  31. Campos-Fernández L, Barrientos-Salcedo C, Herrera Valencia EE et al (2019) Substituent effects on the stability, physicochemical properties and chemical reactivity of nitroimidazole derivatives with potential antiparasitic effect: a computational study. New J Chem 43:11125–11134. https://doi.org/10.1039/C9NJ02207D

    Article  Google Scholar 

  32. Exner O, Bohm S (2006) Theory of substituent effects: recent advances. Curr Org Chem 10:763–778. https://doi.org/10.2174/138527206776818892

    Article  CAS  Google Scholar 

  33. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB et al (2016) G16_C01. Gaussian 16, Revision C.01, Gaussian, Inc., Wallin

  36. Dimitrova V, Ilieva S, Galabov B (2003) Electrostatic potential at nuclei as a reactivity index in hydrogen bond formation. Complexes of ammonia with C-H, N–H and O–H proton donor molecules. J Mol Struct THEOCHEM 637:73–80. https://doi.org/10.1016/S0166-1280(03)00402-0

    Article  CAS  Google Scholar 

  37. Mathew J, Suresh CH (2010) Use of molecular electrostatic potential at the carbene carbon as a simple and efficient electronic parameter of N-heterocyclic carbenes. Inorg Chem 49. https://doi.org/10.1021/ic1004243

  38. Suresh CH, Remya GS, Anjalikrishna PK (2022) Molecular electrostatic potential analysis: a powerful tool to interpret and predict chemical reactivity. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1601

    Article  Google Scholar 

  39. Gusel’nikov LE, Avakyan VG, Guselnikov SL, (2002) Effect of geminal substitution at silicon on 1-sila- and 1,3-disilacyclobutanes’ strain energies, their 2+2 cycloreversion enthalpies, and Si=C π-bond energies in silenes. J Am Chem Soc 124:662–671. https://doi.org/10.1021/ja011287i

    Article  PubMed  CAS  Google Scholar 

  40. Ishikawa M (1978) Photolysis of organopolysilanes. Generation and reactions of silicon-carbon double-bonded intermediates. Pure Appl Chem 50:11–18. https://doi.org/10.1351/pac197850010011

    Article  CAS  Google Scholar 

  41. Leigh WJ (1999) Kinetics and mechanisms of the reactions of Si=C and Ge=C double bonds. Pure Appl Chem 71:453–462. https://doi.org/10.1351/pac199971030453

    Article  CAS  Google Scholar 

  42. Bernardi F, Bottoni A, Olivucci M et al (1993) Does a concerted path exist for the head-to-tail [2.pi.S + 2.pi.S] cycloaddition of silaethylene? J Am Chem Soc 115:3322–3323. https://doi.org/10.1021/ja00061a038

    Article  CAS  Google Scholar 

  43. Venturini A, Bernardi F, Olivucci M et al (1998) Dimerization of silaethylene: computational evidence for a novel mechanism for the formation of 1,3-disilacyclobutane via a 1,2 approach. J Am Chem Soc 120:1912–1913. https://doi.org/10.1021/ja973472v

    Article  CAS  Google Scholar 

  44. Seidl ET, Grev RS, Schaefer HF (1992) Mechanistic, structural, and vibrational aspects of the dimerization of silaethylene. J Am Chem Soc 114:3643–3650. https://doi.org/10.1021/ja00036a011

    Article  CAS  Google Scholar 

  45. Zhang S, Conlin RT, McGarry PF, Scaiano JC (1992) Reaction kinetics, quantum yields, and product studies for the dimerization of a stabilized silene. Organometallics 11:2317–2319. https://doi.org/10.1021/om00042a058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Rashtriya Uchchatar Shiksha Abhiyan (RUSA) and University Grants Commission (UGC) for the financial support. AK thanks Kerala State Council for Science, Technology and Environment (KSCSTE) for a fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Major part of the work has been done by A. K. and J. J. M. J. M. wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jomon Mathew.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 964 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizhuvedath, A., Mallikasseri, J.J. & Mathew, J. Electronic effects of substituents on the reactivity of silenes: a computational analysis. Struct Chem 35, 119–133 (2024). https://doi.org/10.1007/s11224-023-02169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02169-1

Keywords

Navigation