Skip to main content
Log in

Influence of water on the conformations and interactions within two choline chloride-based deep eutectic solvents: a density functional theory investigation

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work presents the study of the conformations of {[Choline][Chloride]:Phenol} ratio [1:2] and {[Choline][Chloride]:Glycolic acid} ratio [1:1] deep eutectic solvents in their isolated state and with the presence of water. The optimization of the geometries was carried out using density functional theory with the B3LYP functional and the 6–311(+ +)G(d,p) basis set. Through the study of the geometry optimization and the charge distribution, the most stable conformations of choline, choline chloride, the two aforementioned deep eutectic solvents and their cluster with water are detailed. The main hydrogen bonds are identified using the values of stabilizing energies between interacting orbitals. The results highlight the OH‧‧‧Cl type of hydrogen bonds as one of the key interactions. It is found that the chloride ion acts as a hydrogen bond acceptor while the choline ion acts primarily as a hydrogen bond donor. Glycolic acid and phenol can play both roles. The molecule of water is able to form various hydrogen bonds. The strongest hydrogen bonds are observed between the chloride ion and a hydroxyl group. Finally, an increasing total number of hydrogen bonds in a system decreases the strength of the overall interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and also in the supporting information file.

References

  1. Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chem Commun 70–71. https://doi.org/10.1039/b210714g

  2. Abbott AP, Boothby D, Capper G et al (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  3. Morrison HG, Sun CC, Neervannan S (2009) Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 378:136–139. https://doi.org/10.1016/j.ijpharm.2009.05.039

    Article  CAS  PubMed  Google Scholar 

  4. Korotkevich A, Firaha DS, Padua AAH, Kirchner B (2017) Ab initio molecular dynamics simulations of SO 2 solvation in choline chloride/glycerol deep eutectic solvent. Fluid Phase Equilib 448:59–68. https://doi.org/10.1016/j.fluid.2017.03.024

    Article  CAS  Google Scholar 

  5. Alizadeh V, Malberg F, Pádua AAH, Kirchner B (2020) Are There Magic Compositions in Deep Eutectic Solvents? Effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics. J Phys Chem B 124:7433–7443. https://doi.org/10.1021/acs.jpcb.0c04844

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira ESC, Voroshylova IV, Figueiredo NM et al (2020) Computational and experimental study of propeline: a choline chloride based deep eutectic solvent. J Mol Liq 298:111978. https://doi.org/10.1016/j.molliq.2019.111978

  7. Biernacki K, Souza HKS, Almeida CMR et al (2020) Physicochemical properties of choline chloride-based deep eutectic solvents with polyols: an experimental and theoretical investigation. ACS Sustainable Chem Eng 8:18712–18728. https://doi.org/10.1021/acssuschemeng.0c08288

    Article  CAS  Google Scholar 

  8. Moradi H, Farzi N (2021) Experimental and computational assessment of the physicochemical properties of choline chloride/ ethylene glycol deep eutectic solvent in 1:2 and 1:3 mole fractions and 298.15–398.15 K. J Mol Liq 339:116669. https://doi.org/10.1016/j.molliq.2021.116669

  9. Florindo C, Oliveira FS, Rebelo LPN et al (2014) Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chem Eng 2:2416–2425. https://doi.org/10.1021/sc500439w

    Article  CAS  Google Scholar 

  10. Jangir A, kumar, Patel D, More R, et al (2019) New insight into experimental and computational studies of Choline chloride-based ‘green’ ternary deep eutectic solvent (TDES). J Mol Struct 1181:295–299. https://doi.org/10.1016/j.molstruc.2018.12.106

    Article  CAS  Google Scholar 

  11. Gautam R, Kumar N, Lynam JG (2020) Theoretical and experimental study of choline chloride-carboxylic acid deep eutectic solvents and their hydrogen bonds. J Mol Struct 1222:128849. https://doi.org/10.1016/j.molstruc.2020.128849

  12. Sethi O, Singh M, Singh Kang T, Kumar Sood A (2021) Volumetric and compressibility studies on aqueous mixtures of deep eutectic solvents based on choline chloride and carboxylic acids at different temperatures: experimental, theoretical and computational approach. J Mol Liq 340:117212. https://doi.org/10.1016/j.molliq.2021.117212

  13. Khezeli T, Daneshfar A, Sahraei R (2015) Emulsification liquid–liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1425:25–33. https://doi.org/10.1016/j.chroma.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  14. Arain MB, Yilmaz E, Soylak M (2016) Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt. J Mol Liq 224:538–543. https://doi.org/10.1016/j.molliq.2016.10.005

    Article  CAS  Google Scholar 

  15. Aydin F, Yilmaz E, Soylak M (2017) A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem J 132:280–285. https://doi.org/10.1016/j.microc.2017.02.014

    Article  CAS  Google Scholar 

  16. Liu L, Zhu T (2017) Emulsification liquid–liquid microextraction based on deep eutectic solvents: an extraction method for the determination of sulfonamides in water samples. Anal Methods 9:4747–4753. https://doi.org/10.1039/C7AY01332A

    Article  CAS  Google Scholar 

  17. Zounr RA, Tuzen M, Khuhawar MY (2017) Ultrasound assisted deep eutectic solvent based on dispersive liquid liquid microextraction of arsenic speciation in water and environmental samples by electrothermal atomic absorption spectrometry. J Mol Liq 242:441–446. https://doi.org/10.1016/j.molliq.2017.07.053

    Article  CAS  Google Scholar 

  18. Panhwar AH, Tuzen M, Kazi TG (2017) Ultrasonic assisted dispersive liquid-liquid microextraction method based on deep eutectic solvent for speciation, preconcentration and determination of selenium species (IV) and (VI) in water and food samples. Talanta 175:352–358. https://doi.org/10.1016/j.talanta.2017.07.063

    Article  CAS  PubMed  Google Scholar 

  19. Panhwar AH, Tuzen M, Kazi TG (2018) Deep eutectic solvent based advance microextraction method for determination of aluminum in water and food samples: Multivariate study. Talanta 178:588–593. https://doi.org/10.1016/j.talanta.2017.09.079

    Article  CAS  PubMed  Google Scholar 

  20. Zounr RA, Tuzen M, Khuhawar MY (2018) Novel ultrasonic‐assisted deep eutectic solvent‐based dispersive liquid–liquid microextraction for determination of vanadium in food samples by electrothermal atomic absorption spectrometry: a multivariate study. Appl Organometal Chem 32:e4144. https://doi.org/10.1002/aoc.4144

  21. Shishov A, Gorbunov A, Moskvin L, Bulatov A (2020) Decomposition of deep eutectic solvents based on choline chloride and phenol in aqueous phase. J Mol Liq 301:112380. https://doi.org/10.1016/j.molliq.2019.112380

  22. Feller D, Feyereisen MW (1993) Ab initio study of hydrogen bonding in the phenol-water system. J Comput Chem 14:1027–1035. https://doi.org/10.1002/jcc.540140904

    Article  CAS  Google Scholar 

  23. Ramondo F, Bencivenni L, Portalone G, Domenicano A (1995) Effect of intermolecular O-H ⋯ O hydrogen bonding on the molecular structure of phenol: an ab initio molecular orbital study. Struct Chem 6:37–45. https://doi.org/10.1007/BF02263526

    Article  CAS  Google Scholar 

  24. Gerhards M, Schmitt M, Kleinermanns K, Stahl W (1996) The structure of phenol(H2O) obtained by microwave spectroscopy. J Chem Phys 104:967–971. https://doi.org/10.1063/1.470820

    Article  CAS  Google Scholar 

  25. Fang W-H (2000) Theoretical characterization of the excited-state structures and properties of phenol and its one-water complex. J Chem Phys 112:1204–1211. https://doi.org/10.1063/1.480673

    Article  CAS  Google Scholar 

  26. Benoit DM, Clary DC (2000) Quantum Simulation of Phenol−Water Clusters. J Phys Chem A 104:5590–5599. https://doi.org/10.1021/jp994420q

    Article  CAS  Google Scholar 

  27. Lüchow A, Spangenberg D, Janzen C et al (2001) Structure and energetics of phenol(H2O)n, n ☐ 7: Quantum Monte Carlo calculations and double resonance experiments. Phys Chem Chem Phys 3:2771–2780. https://doi.org/10.1039/b101779i

    Article  CAS  Google Scholar 

  28. Dimitrova Y (2004) Ab initio and DFT studies of the vibrational spectra of hydrogen-bonded PhOH…(H2O)4 complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 60:3049–3057. https://doi.org/10.1016/j.saa.2004.01.026

    Article  CAS  Google Scholar 

  29. Bandyopadhyay I, Lee HM, Kim KS (2005) Phenol vs Water molecule interacting with various molecules: σ-type, π-type, and χ-type hydrogen bonds, interaction energies, and their energy components. J Phys Chem A 109:1720–1728. https://doi.org/10.1021/jp0449657

    Article  CAS  PubMed  Google Scholar 

  30. Parthasarathi R, Subramanian V, Sathyamurthy N (2005) Hydrogen bonding in phenol, water, and phenol−water clusters. J Phys Chem A 109:843–850. https://doi.org/10.1021/jp046499r

    Article  CAS  PubMed  Google Scholar 

  31. Cesari L, Canabady-Rochelle L, Mutelet F (2018) Computational study of phenolic compounds-water clusters. Struct Chem 29:625–643. https://doi.org/10.1007/s11224-018-1081-9

    Article  CAS  Google Scholar 

  32. Lewars E (2011) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 2nd ed. Springer, Dordrecht [Netherlands] ; London ; New York

  33. Słupek E, Makoś P (2020) Absorptive desulfurization of model biogas stream using choline chloride-based deep eutectic solvents. Sustainability 12:1619. https://doi.org/10.3390/su12041619

    Article  CAS  Google Scholar 

  34. Rain MI, Iqbal H, Saha M et al (2021) A comprehensive computational and principal component analysis on various choline chloride-based deep eutectic solvents to reveal their structural and spectroscopic properties. J Chem Phys 155:044308. https://doi.org/10.1063/5.0052569

  35. Kaur P, Rajani N, Kumawat P et al (2018) Performance and mechanism of dye extraction from aqueous solution using synthesized deep eutectic solvents. Colloids Surf, A 539:85–91. https://doi.org/10.1016/j.colsurfa.2017.12.013

    Article  CAS  Google Scholar 

  36. Rodriguez NR, Molina BS, Kroon MC (2015) Aliphatic+ethanol separation via liquid–liquid extraction using low transition temperature mixtures as extracting agents. Fluid Phase Equilib 394:71–82. https://doi.org/10.1016/j.fluid.2015.03.017

    Article  CAS  Google Scholar 

  37. Ma S, Hou Y, Sun Y et al (2017) Simulation and experiment for ethanol dehydration using low transition temperature mixtures (LTTMs) as entrainers. Chem Eng Process 121:71–80. https://doi.org/10.1016/j.cep.2017.08.009

    Article  CAS  Google Scholar 

  38. Thakkar AJ, Kassimi NE-B, Hu S (2004) Hydrogen-bonded complexes of glycolic acid with one and two water molecules. Chem Phys Lett 387:142–148. https://doi.org/10.1016/j.cplett.2004.02.012

    Article  CAS  Google Scholar 

  39. Roy AK, Hart JR, Thakkar AJ (2007) Clusters of glycolic acid and 16 water molecules. Chem Phys Lett 434:176–181. https://doi.org/10.1016/j.cplett.2006.12.010

    Article  CAS  Google Scholar 

  40. Gu Q, Shen D, Tang Z et al (2017) Dissection of H-bonding interactions in a glycolic acid–water dimer. Phys Chem Chem Phys 19:14238–14247. https://doi.org/10.1039/C7CP02234D

    Article  CAS  PubMed  Google Scholar 

  41. Yu Q, Wang F, Jian Y, et al (2022) Extraction of flavonoids from Glycyrrhiza residues using deep eutectic solvents and its molecular mechanism. J Mol Liq 363:119848. https://doi.org/10.1016/j.molliq.2022.119848

  42. van den Bruinhorst A, Spyriouni T, Hill J-R, Kroon MC (2018) Experimental and molecular modeling evaluation of the physicochemical properties of proline-based deep eutectic solvents. J Phys Chem B 122:369–379. https://doi.org/10.1021/acs.jpcb.7b09540

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Liu B, Yang H, Tian J (2022) Properties of binary mixtures of a novel natural deep eutectic solvent (glycolic acid + xylitol) and water at several temperatures. Fluid Phase Equilibria 556:113390. https://doi.org/10.1016/j.fluid.2022.113390

  44. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0.9, Gaussian

  45. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 09, Revision D.01, Wallingford CT, Gaussian Inc

  46. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  49. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  50. Pacios LF, Gálvez O, Gómez PC (2005) Variation of geometries and electron properties along proton transfer in strong hydrogen-bond complexes. J Chem Phys 122:214307. https://doi.org/10.1063/1.1899103

  51. Ashworth CR, Matthews RP, Welton T, Hunt PA (2016) Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys Chem Chem Phys 18:18145–18160. https://doi.org/10.1039/C6CP02815B

    Article  CAS  PubMed  Google Scholar 

  52. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 100:65–73. https://doi.org/10.1080/00268970110088901

    Article  Google Scholar 

  53. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031. https://doi.org/10.1063/1.472902

    Article  CAS  Google Scholar 

  54. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  55. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  56. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  57. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  58. Carpenter JE (1987) Extension of Lewis structure concepts to open-shell and excited-state molecular species. University of Wisconsin

  59. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (Thoechem) 169:41–62. https://doi.org/10.1016/0166-1280(88)80248-3

    Article  Google Scholar 

  60. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  61. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond and orbital donor-acceptor perspective. Cambridge University Press, New York

    Google Scholar 

  62. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373. https://doi.org/10.1002/jcc.540110311

    Article  CAS  Google Scholar 

  63. Moosavi M, Banazadeh N, Torkzadeh M (2019) Structure and dynamics in amino acid choline-based ionic liquids: a combined QTAIM, NCI, DFT, and molecular dynamics study. J Phys Chem B 123:4070–4084. https://doi.org/10.1021/acs.jpcb.9b01799

    Article  CAS  PubMed  Google Scholar 

  64. Cesari L, Canabady-Rochelle L, Mutelet F (2017) Computational study on the molecular conformations of phenolic compounds. Struct Chem 29:179–194. https://doi.org/10.1007/s11224-017-1017-9

    Article  CAS  Google Scholar 

  65. Hansen BB, Spittle S, Chen B et al (2021) Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 121:1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385

    Article  CAS  PubMed  Google Scholar 

  66. Zhu J, Yu K, Zhu Y et al (2017) Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: The influence of electronic effect of substitution group. J Mol Liq 232:182–187. https://doi.org/10.1016/j.molliq.2017.02.071

    Article  CAS  Google Scholar 

  67. Guo W, Hou Y, Ren S et al (2013) Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data 58:866–872. https://doi.org/10.1021/je300997v

    Article  CAS  Google Scholar 

  68. Elderderi S, Leman-Loubière C, Wils L et al (2020) ATR-IR spectroscopy for rapid quantification of water content in deep eutectic solvents. J Mol Liq 311:113361. https://doi.org/10.1016/j.molliq.2020.113361

Download references

Funding

This work was supported by the region Grand-Est.

Author information

Authors and Affiliations

Authors

Contributions

Thomas Di Pietro: calculation, investigation, methodology, first draft. Laetitia Cesari: supervision, review. Fabrice Mutelet: supervision, project administration, writing—review and editing.

The final version of the manuscript submitted was approved by all the authors.

Corresponding author

Correspondence to Fabrice Mutelet.

Ethics declarations

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Consent to participate

This article does not contain any studies involving animals performed by any of the authors.

Consent to publish

The authors mentioned in the manuscript have given consent for submission and subsequent publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1956 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Pietro, T., Cesari, L. & Mutelet, F. Influence of water on the conformations and interactions within two choline chloride-based deep eutectic solvents: a density functional theory investigation. Struct Chem 34, 2165–2183 (2023). https://doi.org/10.1007/s11224-023-02156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02156-6

Keywords

Navigation