Skip to main content
Log in

Investigation of the influence of Z/E configuration on the antioxidant and antiradical activities of lapachol and its derivatives: DFT assessment

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometry optimization of a series of twenty-seven lapachol derivatives used for the treatment of carcinosarcoma tumor (Walker 256) is performed at B3LYP/6–311++G(d,p) level in three distinct media (gas phase, water, and acetonitrile). The migration from the E to the Z configuration or vice versa provokes a noticeable change in the O–H bond distance and potentially a remarkable alteration of the antioxidant activity. In addition, the majority of the E configuration structures have shown a more pronounced antioxidant activity in solution (water and acetonitrile). In their various Z/E configurations, the 2-hydroxy-3-(2,3-dihydroxy-3-methylbutyl)-1,4-naphtoquinone compound bearing O···HO hydrogen bond (La21(HB)) as well as the (2-hydroxy-3-(but-2-enyl)-1,4-naphtoquinone (La6(HB)) and 2-hydroxy-3-(3-methylpent-2-enyl)-1,4-naphtoquinone (La7(HB)) compounds have stronger antioxidant powers than classical bioactive compounds (caffeic acid, ferulic acid, p-coumaric acid, sinapic acid, and vitamin C). On the whole, however, all Z configuration compounds have a higher antiradical status compared to that of their E configuration counterparts. From the global donor–acceptor mappings, the 2-hydroxy-3-(2,3-dihydroxy-3-methylbutyl)-1,4-naphtoquinone structure (La21 (HB)) has been elected as the best antiradical molecule of the series in the three study media. Its antiradical power has been detected to be higher than that of these five standard references adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data used to support the finding of this study are available.

References

  1. Mammino L (2012) Computational chemistry capacity building in an underprivileged context: challenges, outcomes and perspectives. Tanz J Sc 38(3):95–107

    Google Scholar 

  2. Ponnan A, Perumal R, Sathiyavedu TS, Arabandi R (2006) Antioxidant activity measured in different solvent fractions obtained from Mentha spicata Linn. An analysis by ABTS decolorization assay. Asia Pac J Clin Nutr 119–124

  3. Zhulong C, Chun-Peng S, Woe YK, Ken Y (2016) ROS regulation during plant abiotic stress responses. Front Plant Sci 1–3

  4. Kris-Etherton P, Le Fevre M, Beecher G, Gross M, Keen C, Etherton T (2004) Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu Rev Nutr 24:511–538

    Article  CAS  PubMed  Google Scholar 

  5. Schwarz KG, Bertelsen LR, Nissen PT, Gardner MI, Heinonen A, Hopia T, HuynhBa P, Lambelet D, McPhall LH, Skibsted HL, Tijburg L (2001) Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur Food Res Technol 212:319–328

    Article  CAS  Google Scholar 

  6. Ahn DU, Olson DG, Lee JI, Jo C, Wu C, Chen X (1998) Packaging and irradiation effects on lipid oxidation and volatiles in pork patties. J Food Sci 63:15–17

    Article  CAS  Google Scholar 

  7. Shahid W, Ahmad A, Mangaiyarkarasi R, Omer M, Shahina N, Abdurraheem U, Rahmanullah S, Za Y (2013) Effect of polyphenolic rich, green tea extract as antioxidant on broiler performance during 0–4. IJAR 1(9):177–181

    CAS  Google Scholar 

  8. Asare GA, Mossanda KS, Kew MC, Paterson AC, Kahler-Venter CP, Siziba K (2006) Hepatocellular carcinoma caused by iron overload: a possible mechanism of direct hepatocarcinogenicity. Toxicology 219:41–52

    Article  CAS  PubMed  Google Scholar 

  9. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Math Phys Sci 147:332–335

    CAS  Google Scholar 

  10. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  11. Shahidi F, Zhong Y (2015) Measurement of antioxidant activity. J Funct Foods 8:757–781

    Article  Google Scholar 

  12. Gonzalez-Paramás AM, Esteban S, Santos-Buelga C, de Pascual-Teresa S, Rivas-Gonzalo JC (2004) Flavanol content and antioxidant activity in winery byproducts. J Agric Food Chem 52:234–238

    Article  PubMed  Google Scholar 

  13. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52:255–260

    Article  CAS  PubMed  Google Scholar 

  14. Ruberto G, Renda A, Daquino C, Amico V, Spatafora C, Tringali C, Tommasi N (2007) Polyphenols constituents and antioxidant activity of grape pomace from five Sicilian red grape cultivars. Food Chem 100:203–210

    Article  CAS  Google Scholar 

  15. Newkirk KA, Gilchrist L, Hand LW, Sutton DS (1993) Effects of synthetic antioxidants and rosemary extracts on oxidative rancidity and color stability in whole hog sausage. Animal Science Research Report. Oklahoma Agricultural Experiment Station 78–83

  16. Nahm SH, Juliana RH, Simon EJ (2012) Effects of selected synthetic and natural antioxidants on the oxidative stability of shea butter (Vitellariaparadoxa subsp. paradoxa). J Med Act Plants 1(2):69–75

    Google Scholar 

  17. Damisi JA, Hansen RW, Grabowsk HG (2003) The price of innovation: new estimates of drugs development cost. J Health Econ 22:185

    Google Scholar 

  18. Chebude Y, Clough J, Crawford B, Engida T, Lancaster S, Marriot R, Midiwo J, Mohee R, Nyamori V, Palermo A, Ruthven S, Welton T (2011) Wealth not waste: green science and engineering for sustainable growth in Africa, Pan African Chemistry Network. RSC Adv 1–21

  19. Krystona TB, Georgieva AB, Pissis P, Georgakilasa AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res Fundam Mol Mech Mutagen 711:193–201

    Article  Google Scholar 

  20. Jiranusornkul S, Laughton CA (2008) Destabilization of DNA duplexes by oxidative damage at guanine: implications for lesion recognition and repair. J R Soc Interface 5:191–198

    Article  Google Scholar 

  21. Konsta AA, Visvardis EE, Haveles KS, Georgakilas AG, Sideris EG (2003) Detecting radiation-induced DNA damage: from changes in dielectric properties to programmed cell death. J Non-Cryst Solids 305:295–302

    Article  Google Scholar 

  22. Spassky A, Angelov D (1997) Influence of the local helical conformation on the guanine modifications generated from one-electron DNA oxidation. Biochemistry 36:6571–6576

    Article  CAS  PubMed  Google Scholar 

  23. Gillard N, Begusova M, Castaing B, Potheim-Maurizot M (2004) Radiation effects binding of Fgp repair protein to an abasic site containing DNA. Radiat Res 162:566–571

    Article  CAS  PubMed  Google Scholar 

  24. Boveris A (1982) Superoxide radical and hydrogen peroxide in mitochondria, ed. W.A. Pryor. Academic Press, New York. Free Radic Biol 65–89

  25. Ionescu JG, Merk M, Dowes F (1998) Clinical application of redox potential testing in the blood. Syllabus of 33rd AAEM Annual Meeting, Baltimore, USA, pp 503–521

  26. Seo MY, Lee SM (2002) Protective effect of low dose of ascorbic acid on hepabiliary function in hepatic ischemia/reperfusion in rats. J Hepatol 36(1):72–77

    Article  CAS  PubMed  Google Scholar 

  27. Duarte TL, Lunec J (2005) When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res 39:671–681

    Article  CAS  PubMed  Google Scholar 

  28. Blumberg J, Block G (1994) The alpha-tocopherol beta-carotene cancer prevention in Finland. Nutr Rev 52(7):242–245

    Article  CAS  PubMed  Google Scholar 

  29. Misra HP, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  30. Bolton JL, Trush MA, Penning G, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. 98. Chem Res Toxicol 13:135–160

    Article  CAS  PubMed  Google Scholar 

  31. Boveris A, Docampo R, Turrens JF, Stoppani AO (1978) Effect of B-lapachone on superoxide anion and hydrogen peroxide production in Trypanosoma cruzi. Biochem J 175:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hobb C (1998) Herbal remedies for dummies. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  33. EFSA (2012) Scientific opinion on the reevaluation of butylated hydroxytoluene BHT (E 321) as a Food Additive. EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). EFSA J 10(3):2588

    Google Scholar 

  34. Subramanian S, Ferreira MC, Trsic M (1998) A structure-activity relationship study of lapachol and some derivatives of 1, 4-naphthoquinones against carcinosarcoma Walker 256. Struct Chem 9(1):47–57

    Article  CAS  Google Scholar 

  35. Kabanda MM, Mammino L, Murulana LC, Mwangi HM, Mabusela WT (2015) Antioxidant radical scavenging properties of phenolic pent-4-en-1-yne derivatives isolated from Hypoxis rooper. A DFT Study in vacuo and in Solution. Int J Food Prop 18:149–164

    Article  CAS  Google Scholar 

  36. Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108(92–96):23

    Google Scholar 

  37. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  38. Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  39. Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111:1554–1561

    Article  CAS  PubMed  Google Scholar 

  40. Delgado Alfaro RA, Gomez-Sandoval Z, Mammino L (2014) Evaluation of the antiradical activity of hyperjovinol-A utilizing donor-acceptor map. J Mol Model 20:2337

    Article  Google Scholar 

  41. Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ (2001) The effective fragment potential method: a QMbased MM approach to modeling environmental effects in chemistry. J Phys Chem A 105(293307):20

    Google Scholar 

  42. Cao GH, Prior RL (1999) Measurement of oxygen radical absorbance capacity in biological samples. Meth Enzymol 299:50–62

    Article  CAS  Google Scholar 

  43. Lien E, Ren S, Bui H, Wang R (1999) Quantitative structure activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 26(3–4):285–294

    Article  CAS  PubMed  Google Scholar 

  44. Martίnez A (2009) Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances? J Phys Chem B 113:4915–4921

    Article  Google Scholar 

  45. Johns JR, James A (2014) Platts, Theoretical insight into the antioxidant properties of melatonin and derivatives. Org Biomol Chem 12:7820–7827

    Article  CAS  PubMed  Google Scholar 

  46. Geerling P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  Google Scholar 

  47. Gàzques JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting. J Phys Chem A 111:1966–1970

    Article  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JRMontgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi JJ, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth A, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09: revision A.2. Gaussian, Inc.: Wallingford, CT

  49. Fifen JJ, Nsangou M, Dhaouadi Z, Motapon O, Jaidane N (2011) Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid : DFT and TD-DFT studies. Comput Theor Chem 966:232–243

    Article  CAS  Google Scholar 

  50. Menzel H (2002) Photoreactive organic thin films. Zouheir Sekkat-Wolfgang Knoll: Elsevier Science (USA)

  51. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  52. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  53. Chamorro E, Chattaraj P, Fuentealba KP (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072

    Article  CAS  PubMed  Google Scholar 

  54. Salga MS, Sada I, Abdullahi M (2014) Influence of steric hindrance on the antioxidant activity of some Schiff base ligands and their copper (II) complexes. Orient J Chem 30(4):1529–1534

    Article  CAS  Google Scholar 

  55. Lengyel J, Rimarčík J, Vagànek A, Klein E (2013) On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage. Phys Chem Chem Phys 15:10895–10903

    Article  CAS  PubMed  Google Scholar 

  56. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  57. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the antioxidant activity of phenolic antioxidant: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  PubMed  Google Scholar 

  58. Javan AJ, Javan MJ, Tehrani AA (2013) Theoretical investigation on antioxidant activity of bromophenol from the marine red alga Rhodomela confervoides: H-atom versus electron transfer mechanism. J Agric Food Chem 61:1534–1541

    Article  CAS  PubMed  Google Scholar 

  59. Mezsam N (2014) On the antioxidant activity of the ortho and meta substituted daidzein derivatives in the gas phase and solvent environment. J Mex Chem Soc 58:36–45

    Google Scholar 

  60. Zang HY (2005) Structure-activity relationships and rational design strategies for radical-scavenging antioxidants. Curr Comput-Aided Drug Des 1:257–273

    Article  Google Scholar 

  61. Mbieda JN, Ateba AB, Bikele MD, ZoboHoltomo MJO, Toze FA (2020) Insight into the antioxidant and antiradical properties of coloratane sesquiterpenes extracted from warburgia ugandensis: theoretical evaluation. Struc Chem 020:01634–01645

    Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Dr. Moto Ongagna Jean and Dr. Adjieufak Abel Idrice of the University of Douala for the facilities provided for geometry optimization.

Funding

Financial support from the Ministry of Higher Education of Cameroon.

Author information

Authors and Affiliations

Authors

Contributions

For the elaboration of this work, the tasks are divided as follows: optimization of geometry and other computational calculations, Djafarou Ngouh Pajoudoro and Inocent Djacktayang; data analysis, Tables 1, 2, and 3 setup, Figs. 1, 2, 3, 4, 5, and 6, additional materials, Tables 1S and 2S and Fig. 1S, Flavien Aristide A Toze and Daniel Lissouck; and article design, coordination, and manuscript writing, Désiré Bikele Mama.

Corresponding author

Correspondence to Désiré Bikele Mama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajoudoro, D.N., Djacktayang, I., Toze, F.A.A. et al. Investigation of the influence of Z/E configuration on the antioxidant and antiradical activities of lapachol and its derivatives: DFT assessment. Struct Chem 34, 979–993 (2023). https://doi.org/10.1007/s11224-022-02061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02061-4

Keywords

Navigation