Skip to main content
Log in

Potentiality of carbon nanotube to encapsulate some alkylating agent anticancer drugs: a molecular simulation study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Encapsulation of chlorambucil, cyclophosphamide, and melphalan with (9,9) carbon nanotube was investigated in aqueous solution. The structures were modeled in gas phase applying density functional calculations. Then, solvation free energies and association free energies of considered structures in water were studied by Monte Carlo simulation and perturbation method. Outcomes of gas phase study revealed that all three drugs can encapsulate into carbon nanotube. Monte Carlo simulation results showed that electrostatic interactions play a crucial role in the intermolecular energies after encapsulation in aqueous media. It is found that among three drugs, solvation free energy of chlorambucil was increased after encapsulation. Moreover, solvation of carbon nanotube was enhanced after encapsulation of drugs which improve the pharmaceutical applications. Calculated association free energies indicated that chlorambucil–carbon nanotube was the only stable encapsulated drug in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ralhan R, Kaur J (2007) Alkylating agents and cancer therapy. Expert Opin Ther Pat 17:1061–1075

    CAS  Google Scholar 

  2. Skeel R (2007) Antineoplastic drugs and biologic response modifiers: classification, use and toxicity of clinically useful agents (Chapter 4). Handbook of cancer chemotherapy 7th edition New York: Lippincott Williams & Wilkins

  3. Rivera E (2003) Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist 8:3–9

    CAS  PubMed  Google Scholar 

  4. Wang W-S, Chiou T-J, Liu J-H, Fan FS, Yen C-C, Chen P-M (2000) Vincristine-induced dysphagia suggesting esophageal motor dysfunction: a case report. Jpn J Clin Oncol 30:515–518

    CAS  PubMed  Google Scholar 

  5. Batist G, Gelmon KA, Chi KN, Miller WH, Chia SK, Mayer LD et al (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15:692–700

    CAS  PubMed  Google Scholar 

  6. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H et al (2007) A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 97:170–176

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson R, Plummer R, Adam J, Eatock M, Boddy A, Griffin M et al (2008) Phase I and pharmacokinetic study of NC-6004, a new platinum entity of cisplatin-conjugated polymer forming micelles. J Clin Oncol 26:2573

    Google Scholar 

  8. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Agarwal N, Fletcher D, Ward J (2007) Obesity and treatment of prostate cancer: what is the right dose of Lupron Depot? Clin Cancer Res 13:4027

    PubMed  Google Scholar 

  10. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    CAS  PubMed  Google Scholar 

  11. Chonn A, Cullis PR (1995) Recent advances in liposomal drug-delivery systems. Curr Opin Biotechnol 6:698–708

    CAS  PubMed  Google Scholar 

  12. Torchilin VP (2010) Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents. Ther Deliv 1:257–272

    CAS  PubMed  Google Scholar 

  13. Yang T, Choi M-K, Cui F-D, Lee S-J, Chung S-J, Shim C-K et al (2007) Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res 24:2402–2411

    CAS  PubMed  Google Scholar 

  14. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    CAS  PubMed  Google Scholar 

  15. Juárez AR, Anota EC, Cocoletzi HH, Ramírez JS, Castro M (2017) Stability and electronic properties of armchair boron nitride/carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 25:716–725

    Google Scholar 

  16. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen D, Wu X, Wang J, Han B, Zhu P, Peng C. Morphological observation of interaction between PAMAM dendrimer modified SWCNT and pancreatic cancer cells

  18. Cui D, Zhang H, Sheng J, Wang Z, Toru A, He R et al (2010) Effects of CdSe/ZnS quantum dots covered multi-walled carbon nanotubes on murine embryonic stem cells. Nano Biomed Eng 2:236–244

    CAS  Google Scholar 

  19. Tian Z, Shi Y, Yin M, Shen H, Jia N (2011) Functionalized multiwalled carbon nanotubes-anticancer drug carriers: synthesis, targeting ability and antitumor activity. Nano Biomed Eng;3

  20. Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine. 5:1277–1301

    CAS  PubMed  Google Scholar 

  21. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65:1866–1879

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pantarotto D, Briand J-P, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun:16–17

  24. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14:316–323

    CAS  Google Scholar 

  25. Hilder TA, Hill JM (2008) Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 8:258–261

    Google Scholar 

  26. Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473

    CAS  Google Scholar 

  27. Rahmani L, Ketabi S (2015) Solvation of alanine and histidine functionalized carbon nanotubes in aqueous media: a Monte Carlo simulation study. J Mol Liq 208:191–195

    CAS  Google Scholar 

  28. Roosta S, Hashemianzadeh SM, Ketabi S (2016) Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: molecular simulation and free energy calculation. Mater Sci Eng C 67:98–103

    CAS  Google Scholar 

  29. Ketabi S, Rahmani L (2017) Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: a computer simulation study. Mater Sci Eng C 73:173–181

    CAS  Google Scholar 

  30. Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y et al (2011) Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer 47:1873–1882

    CAS  PubMed  Google Scholar 

  31. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF et al (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47:5235–5237

    CAS  Google Scholar 

  32. Avti PK, Sitharaman B (2012) Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging. Int J Nanomedicine 7:1953

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926

    CAS  Google Scholar 

  34. Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6:555

    PubMed  PubMed Central  Google Scholar 

  35. Elhissi A, Ahmed W, Hassan IU, Dhanak V, D’Emanuele A (2012) Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv, 2012

  36. Wang X, Liu Z (2012) Carbon nanotubes in biology and medicine: an overview. Chin Sci Bull 57:167–180

    CAS  Google Scholar 

  37. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  38. Becke AD (1998) A new inhomogeneity parameter in density-functional theory. J Chem Phys 109:2092–2098

    CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  40. Petersson G, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081–6090

    CAS  Google Scholar 

  41. Petersson A, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193–2218

    CAS  Google Scholar 

  42. Niyogi S, Hamon M, Hu H, Zhao BB, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002). Acc Chem Res 35:1105

    CAS  PubMed  Google Scholar 

  43. Umadevi D, Panigrahi S, Sastry GN (2014) Noncovalent interaction of carbon nanostructures. Acc Chem Res 47:2574–2581

    CAS  PubMed  Google Scholar 

  44. Saikia N, Deka RC (2013) A comparison of the effect of nanotube chirality and electronic properties on the π–π interaction of single-wall carbon nanotubes with pyrazinamide antitubercular drug. Int J Quantum Chem 113:1272–1284

    CAS  Google Scholar 

  45. Umadevi D, Sastry GN (2013) Impact of the chirality and curvature of carbon nanostructures on their interaction with aromatics and amino acids. ChemPhysChem. 14:2570–2578

    CAS  PubMed  Google Scholar 

  46. Bilic A, Gale JD (2008) Chemisorption of molecular hydrogen on carbon nanotubes: a route to effective hydrogen storage? J Phys Chem C 112:12568–12575

    CAS  Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  48. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    CAS  Google Scholar 

  49. Haar L, Gallagher J, Kell G (1984) National Bureau of Standards/National Research Council Steam Tables. Hemisphere Publishing Corp.: Bristol, PA

  50. Marsh K (1987) International Union of Pure and Applied Chemistry: recommended reference materials for the realization of physicochemical properties. Section Optical Refraction, Blackwell Scientific Publications, Oxford, UK ;500

  51. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  52. Jorgensen WL (1981) Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc;(United States), 103

  53. Jia Y, Wang M, Wu L, Gao C (2007) Separation of CO2/N2 gas mixture through carbon membranes: Monte Carlo simulation. Sep Sci Technol 42:3681–3695

    CAS  Google Scholar 

  54. Rappé AK, Casewit CJ, Colwell K, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Google Scholar 

  55. Hansen J-P, McDonald IR (2013) Theory of simple liquids: with applications to soft matter: academic press

  56. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426

    CAS  Google Scholar 

  57. Contreras ML, Torres C, Villarroel I, Rozas R (2019) Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems. Struct Chem 30:369–384

    CAS  Google Scholar 

  58. Ghasemi-Kooch M, Dehestani M, Housaindokht MR, Bozorgmehr MR (2017) Oleuropein interactions with inner and outer surface of different types of carbon nanotubes: insights from molecular dynamic simulation. J Mol Liq 241:367–373

    CAS  Google Scholar 

  59. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  60. Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69(11):115322–115334

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Ketabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, V., Ketabi, S., Samadizadeh, M. et al. Potentiality of carbon nanotube to encapsulate some alkylating agent anticancer drugs: a molecular simulation study. Struct Chem 32, 869–877 (2021). https://doi.org/10.1007/s11224-020-01658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01658-x

Keywords

Navigation