Skip to main content
Log in

Quantitative structure-activity relationship study for prediction of antifungal properties of phenolic compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Antifungal compounds are of interest to reduce commodity spoilage and exposure to mycotoxins. In this study, a series of quantitative structure-activity relationship (QSAR) equations based on topological properties were developed to gain insight into the antifungal activities of phenolic compounds. The molecules were geometry optimized using B3LYP/6-311+G** density functional theory calculations. Analysis of the frontier orbital properties revealed that conjugated phenolic compounds possessed smaller band gap energies. Genetic function approximation (GFA) on populations of 100 one to two descriptor models over 10,000 generations identified several models for antifungal activity against Fusarium verticillioides, Fusarium oxysporum, Aspergillus flavus, Aspergillus fumigatus, Penicillium expansum, and Penicillium brevicompactum. Phenolic compounds with greater antifungal activity possessed a lower electrophilicity index. The correlation coefficients for the one and two descriptor models ranged from 0.627 to 0.790 and 0.762 to 0.939, respectively. Molecular descriptors associated with electrostatic and topological properties are important to describe the antifungal activities of the phenolic compounds studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM (2016). Food Chem 210:402

    CAS  PubMed  Google Scholar 

  2. Zeidan R, Ul-Hassan Z, Al-Thani R, Balmas V, Jaoua S (2018). Toxins 10:242

    PubMed Central  Google Scholar 

  3. Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR (2017). Plants 6:16

    PubMed Central  Google Scholar 

  4. Arnold WA, Oueis Y, O’Connor M, Rinaman JE, Taggart MG, McCarthy RE, Foster KA, Latch DE (2017). Environ Sci: Processes Impacts 19:324

    CAS  Google Scholar 

  5. Hartung T (2019) EFSA Journal 17 (S1). DOI. https://doi.org/10.2903/j.efsa.2019.e170710

  6. Aouidate A, Ghaleb A, Ghamali M, Chtita S, Ousaa A, Choukrad M, Sbai A, Bouachrine M, Lakhlifi T (2018). Struct Chem 29:1287

    Google Scholar 

  7. Boberg J, Dybdahl M, Petersen A, Hass U, Svingen T, Vinggaard AM (2019). Curr Opin Toxicol 15:1

    Google Scholar 

  8. Guenard R (2019). Inform 30:6

    Google Scholar 

  9. Tcheremenskaia O, Battistelli CL, Giuliani A, Benigni R, Bossa C (2019). Comput Toxicol 11:91

    Google Scholar 

  10. Shao Y et al (2006). Phys Chem Chem Phys 8:3172

    CAS  PubMed  Google Scholar 

  11. Hypercube, Inc. (2006) Gainesville, FL

  12. Hong H et al (2008). J Chem Inf Model 48:1337

    CAS  PubMed  Google Scholar 

  13. de Oliveira DB, Gaudio AC (2000). Quant Struct-Act Relat 19:599

    Google Scholar 

  14. Zabka M, Pavela R (2013). Chemosphere 93:1051

    CAS  PubMed  Google Scholar 

  15. Dambolena JS, Lopez AG, Meriles JM, Rubinstein HR, Zygadlo JA (2012). Food Control 28:163

    CAS  Google Scholar 

  16. Koopmans T (1934). Physica 1:104

    Google Scholar 

  17. Appell M, Bosma WB (2015). J Hazard Mater 288:113

    CAS  PubMed  Google Scholar 

  18. Parr RG, Szentpaly LV, Liu S (1999). J Am Chem Soc 121:1922

    CAS  Google Scholar 

  19. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013). J Comput Chem 34:2121

    CAS  Google Scholar 

  20. Gramatica P, Cassani S, Chirico N (2014). J Comput Chem 35:1036

    CAS  PubMed  Google Scholar 

  21. QSAR Research Unit in Environmental Chemistry and Ecotoxicology. http://www.qsar.it Accessed 23 April, 2020

  22. Roy K, Das RN, Ambure P, Aher RB (2016). Chemom Intell Lab Syst 152:18

    CAS  Google Scholar 

  23. Gramatica P, Sangion A (2016). J Chem Inf Model 56:1127

    CAS  PubMed  Google Scholar 

  24. Compton DL, Goodell JR, Grall S, Evans KO, Cermak SC (2015). Ind Crop Prod 77:787

    CAS  Google Scholar 

  25. Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002). J Agric Food Chem 50:2161

    CAS  PubMed  Google Scholar 

  26. Hernández-García L, Sandoval-Lira J, Rosete-Luna S, Niño-Medina G, Sanchez M (2018). Struct Chem 29:1265

    Google Scholar 

  27. Ruhland CT, Day TA (2000). Physiol Plant 109:244

    CAS  Google Scholar 

  28. Rozema J, Noordijk AJ, Broekman RA, van Beem A, Meijkamp BM, de Bakker NVJ, van de Staaij JWM, Stroetenga M, Bohncke SJP, Konert M, Kars S, Peat H, Smith RIL, Convey P (2001). Plant Ecol 154:9

    Google Scholar 

  29. Kim KH, Chang SW, Lee KR (2010). Can J Chem 88:519

    CAS  Google Scholar 

  30. Zhou S, Zhang YK, Kremling KA, Ding Y, Bennett JS, Bae JS, Kim DK, Ackerman HH, Kolomiets MV, Schmelz EA, Schroeder FC, Buckler ES, Jande G (2019). New Phytol 221:2096

    CAS  PubMed  Google Scholar 

  31. Dowd PF, Berhow MA, Johnson ET (2018). Plant Gene 13:50

    CAS  Google Scholar 

  32. Kuo Y-H, Hsu Y-W, Liaw C-C, Lee JK, Huang H-C, Kuo L-MY (2005). J Nat Prod 68:1475

    CAS  PubMed  Google Scholar 

  33. Compton DL, Laszlo JA (2002) Novel sunscreens from vegetable oil and plant phenols. US Patent 6:346,236

    Google Scholar 

  34. DeFilippi LJ, Grall SG, Kinney JF, Laszlo JA, Compton DL (2010) Formulations with feruloyl glycerides and methods of preparations. US Patent 7:744,856

    Google Scholar 

  35. Zhao Z, Li P, Fan Q, Ya H (2019). Struct Chem 30:1707

    CAS  Google Scholar 

  36. Veselinović JB, Đorđević, BogdanovićIvana, VM, Morić I, Veselinović AM (2018) Struct Chem 29:541

  37. Balaban AT (2019). Struct Chem 30:1129

    CAS  Google Scholar 

  38. Andrade-Ochoa S, Nevárez-Moorillόn GV, Sánchez-Torres LE, Villanueva-García M, Sánchez-Ramíez BE, Rodríguez-Valdez LM, Rivera-Chavira BE (2015). BMC Complement Altern Med 15:332

    PubMed  PubMed Central  Google Scholar 

  39. Pizzolitto RP, Jacquat AG, Usseglio VL, Achimón F, Cuillo AE, Zygadlo JA, Dambolena JS (2020). Food Control 108:106836

    CAS  Google Scholar 

  40. Crisan L, Borota A Bora A Pacureanu L (2019) Struct Chem 30:2311

  41. Roy SM, Sharma BK, Roy DR (2019). Struct Chem 30:2379

    CAS  Google Scholar 

  42. Chavda J, Bhatt H (2019). Struct Chem 30:2093

    CAS  Google Scholar 

  43. Ambure P, Halder AL, Diaz HG, Cordeiro MNDS (2019). J Chem Inf Model 59:2538

    CAS  PubMed  Google Scholar 

  44. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014). J Med Chem 57:4977

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Topliss JG (1972). J Med Chem 15:1006

    CAS  PubMed  Google Scholar 

  46. OECD (2007) Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models, Paris

  47. Yan J, Zhu WW, Kong B, Lu HB, Yun YH, Huang JH, Liang YZ (2014). Mol Inform 33:503

    CAS  PubMed  Google Scholar 

  48. Ambure P, Aher RB, Gajewicz A, Puzyn T, Roy K (2015). Chemom Intell Lab Syst 147:1

    CAS  Google Scholar 

  49. Braga PC, Alfieri M, Culici M, Dal Sasso M (2007). Mycoses 50:502

    CAS  PubMed  Google Scholar 

  50. Erturk MD, Sacan MT, Novic M, Minovski N (2012). J Mol Graph Model 38:90

    PubMed  Google Scholar 

  51. Quiroga D, Becerra LD, Coy-Barrera E (2019). ACS Omega 4:13710

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Duhan M, Singh R, Devi M, Sindhu J, Bhatia R, Kumar A, Kumar P (2019). J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1704885

Download references

Acknowledgments

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture (USDA). USDA is an equal opportunity provider and employer and the provider. We are grateful for Prof. Paola Gramatica and Prof. Kanul Roy for the use of their software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Appell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All authors certify and assert that no animals or humans were used to obtain results reported in this research.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appell, M., Tu, YS., Compton, D.L. et al. Quantitative structure-activity relationship study for prediction of antifungal properties of phenolic compounds. Struct Chem 31, 1621–1630 (2020). https://doi.org/10.1007/s11224-020-01549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01549-1

Keywords

Navigation