Skip to main content
Log in

Reactivity and Fe complexation analysis of a series of quinoxaline derivatives used as steel corrosion inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The B3LYP/6-31G(d,p) calculations were conducted to establish a correlation between structural electronic properties and corrosion inhibition efficiencies of four quinoxaline derivatives. The Fukui functions reflecting the local reactivity centers were investigated to determine the Fe-complexes by the studied ligands. Three spin multiplicities were examined and the quintet complexes were the most stable. Five types of interactions between Fe and quinoxaline compounds were studied, i.e., Fe–2S, Fe–2O, Fe–ϕ, Fe–S, and Fe–O among 10 complexes. While the calculated binding energies of the chelating bidentate complexes Fe–2O/2S were the lowest, Fe–ϕ presented a higher energy value without loss of aromaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Fitoz A, Nazır H, Özgür M, Emregül E, Emregül KC (2018) An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor. Corros Sci 133:451–464

    CAS  Google Scholar 

  2. Elshakre ME, Alalawy HH, Awad MI, El-Anadouli BE (2017) On the role fo the electronic states of corrosion inhibitors: quantum chemical-electrochemical correlation study on urea derivatives. Corros Sci 124:121–130

    CAS  Google Scholar 

  3. Benbouya K, Dkhireche N, Rochdi A, Chebab A, Touir R, Touhami ME, Sfaira M (2018) Adsorption and inhibitive performance of 3-methylquinoxaline-2 (1H)-thione against mild steel corrosion in phosphoric acid solution. Euro-Mediterranean J Environ Integration 3(1):2

    Google Scholar 

  4. Qiang Y, Zhang S, Yan S, Zou X, Chen S (2017) Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution. Corros Sci 126:295–304

    CAS  Google Scholar 

  5. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41

    Google Scholar 

  6. Qiang Y, Zhang S, Tan B, Chen S (2018) Evaluation of Ginkgo leaf extract as an eco-friendlycorrosion inhibitor of X70 steel in HCl solution. Corros Sci 133:6–16

    CAS  Google Scholar 

  7. Eddy NO, Ita BI (2011) QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl. J Mol Model 17(2):359–376

    PubMed  CAS  Google Scholar 

  8. Hemapriya V, Prabakaran M, Parameswari K, Chitra S, Kim SH, Chung IM (2016) Dry and wet lab analysis on benzofused heterocyclic compounds as effective corrosion inhibitors for mild steel in acidic medium. J Ind Eng Chem 40:106–117

    CAS  Google Scholar 

  9. Yilmaz N, Fitoz A, Ergun Ü, Emregül KC (2016) A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino) methyl) phenol as a corrosion inhibitor for mild steel in a highly acidic environment. Corros Sci 111:110–120

    CAS  Google Scholar 

  10. Obot IB, Kaya S, Kaya C, Tüzün B (2016) Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res Chem Intermed 42(5):4963–4983

    CAS  Google Scholar 

  11. Dao DQ, Hieu TD, Pham TLM, Tuan D, Nam PC, Obot IB (2017) DFT study of the interactions between thiophene-based corrosion inhibitors and an Fe4 cluster. J Mol Model 23(9):260

    PubMed  Google Scholar 

  12. Garcia-Ochoa E, Guzmán-Jiménez SJ, Hernández JG, Pandiyan T, Vásquez-Pérez JM, Cruz-Borbolla J (2016) Benzimidazole ligands in the corrosion inhibition for carbon steel in acid medium: DFT study of its interaction on Fe 30 surface. J Mol Struct 1119:314–324

    CAS  Google Scholar 

  13. Han C, Zhang C, Liu X, Huang H, Zhuang S, Han P, Wu X (2015) Effects of alloying on oxidation and dissolution corrosion of the surface of γ-Fe (111): a DFT study. J Mol Model 21(7):181

    PubMed  Google Scholar 

  14. Ebenso EE, Isabirye DA, Eddy NO (2010) Adsorption and quantum chemical studies on the inhibition potentials of some thiosemicarbazides for the corrosion of mild steel in acidic medium. Int J Mol Sci 11(6):2473–2498

    PubMed  PubMed Central  CAS  Google Scholar 

  15. El Adnani Z, Mcharfi M, Sfaira M, Benzakour M, Benjelloun AT, Touhami ME (2013) DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (R H; CH 3; Cl) as corrosion inhibitors in hydrochloric acid. Corros Sci 68:223–230

    Google Scholar 

  16. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    CAS  Google Scholar 

  17. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82(1):284–298

    CAS  Google Scholar 

  18. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82(1):299–310

    CAS  Google Scholar 

  19. Dunning Jr TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. Methods of Electronic Structure Theory. Springer US, p 1-27

  20. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  21. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104(3):1040–1046

    CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    CAS  Google Scholar 

  23. Shahraki M, Dehdab M, Elmi S (2016) Theoretical studies on the corrosion inhibition performance of three amine derivatives on carbon steel: molecular dynamics simulation and density functional theory approaches. J Taiwan Inst Chem Eng 62:313–321

    CAS  Google Scholar 

  24. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2010) Gaussian, Inc., Wallingford CT

  25. Awad MK, Mustafa MR, Abouelnga MM (2016) Quantum chemical studies and atomistic simulations of some inhibitors for the corrosion of al surface. Protection of Metals and Physical Chemistry of Surfaces 1(52):156–168

    Google Scholar 

  26. Yang W, Parr RG, Pucci R (1984) Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J Chem Phys 81(6):2862–2863

    CAS  Google Scholar 

  27. Gazquez JL, Mendez F (1994). Idem J Am Chem Soc 116:9298

    Google Scholar 

  28. Qiang Y, Zhang S, Guo L, Zheng X, Xiang B, Chen S (2017) Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros Sci 119:68–78

    CAS  Google Scholar 

  29. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108(19):5708–5711

    PubMed  CAS  Google Scholar 

  30. Malinowski S, Jaroszyńska-Wolińska J, Herbert T (2018) Theoretical predictions of anti-corrosive properties of THAM and its derivatives. J Mol Model 24(1):1

    CAS  Google Scholar 

  31. Udhayakala P, Jayanthi A, Rajendiran TV, Gunasekaran S (2013) Quantum chemical studies on some thiadiazolines as corrosion inhibitors for mild steel in acidic medium. Res Chem Intermed 39(3):895–906

    CAS  Google Scholar 

  32. Dutta A, Saha SK, Banerjee P, Sukul D (2015) Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: combined experimental and theoretical studies. Corros Sci 98:541–550

    CAS  Google Scholar 

  33. Yadav M, Sharma D, Sarkar TK (2015) Adsorption and corrosion inhibitive properties of synthesized hydrazine compounds on N80 steel/hydrochloric acid interface: electrochemical and DFT studies. J Mol Liq 212:451–460

    CAS  Google Scholar 

  34. El Sayed H, El Nemr A, Ragab S (2012) Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium. J Mol Model 18(3):1173–1188

    Google Scholar 

  35. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746

    CAS  Google Scholar 

  36. Murulana LC, Kabanda MM, Ebenso EE (2016) Investigation of the adsorption characteristics of some selected sulphonamide derivatives as corrosion inhibitors at mild steel/hydrochloric acid interface: experimental, quantum chemical and QSAR studies. J Mol Liq 215:763–779

    CAS  Google Scholar 

  37. Saha SK, Hens A, Murmu NC, Banerjee P (2016) A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J Mol Liq 215:486–495

    CAS  Google Scholar 

  38. Jafari H, Sayin K (2016) Corrosion inhibition studies of N, N′-bis (4-formylphenol)-1, 2-Diaminocyclohexane on steel in 1 HCl solution acid. J Taiwan Inst Chem Eng 64:314–324

    CAS  Google Scholar 

  39. Ma H, Chen S, Liu Z, Sun Y (2006) Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: a HartreeFock study. J Mol Struct THEOCHEM 774(1):19–22

    CAS  Google Scholar 

  40. Jamalizadeh E, Hosseini SM, Jafari AH (2009 Jun 30) Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media. Corros Sci 51(6):1428–1435

    CAS  Google Scholar 

  41. Turcio-Ortega D, Pandiyan T, Cruz J, Garcia-Ochoa E (2007) Interaction of imidazoline compounds with Fe n (n= 1− 4 ATOMS) as a model for corrosion inhibition: DFT and electrochemical studies. J Phys Chem C 111(27):9853–9866

    CAS  Google Scholar 

  42. Momeni MJ, Behzadi H, Roonasi P, Sadjadi SA, Mousavi-Khoshdel SM, Mousavi SV (2015) Ab initio study of two quinoline derivatives as corrosion inhibitor in acidic media: electronic structure, inhibitor–metal interaction, and nuclear quadrupole resonance parameters. Res Chem Intermed 41(9):6789–6802

    CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3(1):289–300

    PubMed  CAS  Google Scholar 

  44. Grotrian W (2013) GraphischeDarstellung der Spektren von Atomen und Ionenmitein, zwei und dreiValenzelektronen: ZweiterTeil. Springer-Verlag

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. El Adnani or K. M. Emran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Adnani, Z., Mcharfi, M., Sfaira, M. et al. Reactivity and Fe complexation analysis of a series of quinoxaline derivatives used as steel corrosion inhibitors. Struct Chem 31, 631–645 (2020). https://doi.org/10.1007/s11224-019-01435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01435-5

Keywords

Navigation