Skip to main content
Log in

Biological activity of some ACAT inhibitors in the light of DFT-based quantum descriptors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A detailed investigation is performed for a series of 24 aminosulfonyl carbamates as acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors. The biological activity of aminosulfonyl carbamates in terms of log (IC50) has been estimated by developing suitable quantum chemical descriptors in the light of density functional theory. In order to understand inhibitor-biosystem interactions and to identify potential descriptors, a model biosystem is considered which comprises five different nucleic acid bases. Accordingly, two global descriptors, viz. electron affinity (EA) and energy transfer during the interaction between inhibitors and biosystems (∆E), and a local descriptor, viz. group atomic charges on sulfonyl moiety (∑QSul), are developed toward understanding bio-activity of aminosulfonyl carbamates. It is noteworthy to achieve that the three-parameter regression model for considered parameters EA, ∆E, and ∑QSul is observed to predict about 90% activities of aminosulfonyl carbamates in terms of log(IC50). The developed regression model is also statistically validated and successfully tested for unknown compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  2. Gao H, Katzenellenbogen JA, Garg R, Hansch C (1999) Comparative QSAR analysis of estrogen receptor ligands. Chem Rev 99:723–744

    Article  CAS  PubMed  Google Scholar 

  3. Franke R (1984) Theoretical Drug Design Methods. Elsevier, Amsterdam, p 115

    Google Scholar 

  4. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044

    Article  CAS  PubMed  Google Scholar 

  5. Cronin MT (2000) Computational methods for the prediction of drug toxicity. Curr Opin Drug Discov Devel 3:292–297

    CAS  PubMed  Google Scholar 

  6. Pearlman RS, Yalkowsky SH, Sikula AA, Valvani SC (eds) (1980) Physical chemical properties of drugs, vol 10. Marcel Dekker, New York

    Google Scholar 

  7. Kubinyi H (1995) In: Wolff ME (ed) Burger’s Medicinal Chemistry. Vol. I5th edn. Wiley-Interscience, New York

    Google Scholar 

  8. Estrada E, Molina E (2001) Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design. J Mol Graph Model 20:54–64

    Article  CAS  PubMed  Google Scholar 

  9. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York

    Google Scholar 

  10. Cartier A, Rivail JL (1987) Electronic descriptors in quantitative structure-activity relationships. Chemom Intell Lab Syst 1:335–347

    Article  CAS  Google Scholar 

  11. Chattaraj PK, Roy DR (2007) Update 1 of: Electrophilicity index. Chem Rev 107:PR46–PR74

    Article  CAS  Google Scholar 

  12. Chattaraj PK, Roy DR (2005) Local descriptors around a transition state: a link between chemical bonding and reactivity. J Phys Chem A 109:3771–3772

    Article  CAS  PubMed  Google Scholar 

  13. Chattaraj PK, Roy DR (2006) Possible union of chemical bonding, reactivity and kinetics. J Phys Chem A 110:11401–11403

    Article  CAS  PubMed  Google Scholar 

  14. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  15. Roy DR, Sarkar U, Chattaraj PK, Padmanabhan J, Parthasarathi R, Subramanian V (2006) Analyzing toxicity through electrophilicity. Mol Divers 10:119–131

    Article  CAS  PubMed  Google Scholar 

  16. Mondal Roy S, Roy DR, Sahoo SK (2015) Toxicity prediction of PHDDs and phenols in the light of nucleic acid bases and DNA base pair interaction. J Mol Graph Model 62:128–137

    Article  CAS  PubMed  Google Scholar 

  17. Sharma BK, Roy DR (2018) Toxicity of polyhalogenated dibenzo-p-furans in the light of nucleic acid bases interaction. Comp Biol Chem 76:225–231

    Article  CAS  Google Scholar 

  18. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genome. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang TY, Chang CC, Lin S, Yu C, Li BL, Miyazaki A (2001) Acyl-coenzyme:cholesterol acyltransferase-1 an −2. Curr Opin Lipidol 23:289–296

    Article  Google Scholar 

  20. Chang TY, Chang CC, Cheng D (1997) Acyl-coenzyme:cholesterol acyltransferase. Annu Rev Biochem 66:613–638

    Article  CAS  PubMed  Google Scholar 

  21. Small D (1988) Progression and regression of atherosclerotic lesions: insights from lipid physical biochmeistry. Arteriosclerosis 8:103–129

    Article  CAS  PubMed  Google Scholar 

  22. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  23. O’Brien PM, Sliskovic DR, Blankley J, Roth BD, Wilson MH, Hamelehle KL, Krause BR, Stanfield RJ (1994) Inhibitors of acyl-CoA:cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. 8. Incorporation of amide or amine functionalities into a series of disubstituted ureas and carbamates. Effects on ACAT inhibition in vitro and efficacy in vivo. J Med Chem 37:1810–1822

    Article  PubMed  Google Scholar 

  24. Augelli-Szafran CE, Blankley CJ, Roth BD, Trivedi BK, Bousley RF, Essenberg AD, Hamelehle KL, Krause BR, Stanfield RL (1993) Inhibitors of acyl-CoA: cholesterol acyltransferase. 5. Identification and structure-activity relationships of novel beta-ketoamides as hypocholesterolemic agents. J Med Chem 36:2943–2949

    Article  CAS  PubMed  Google Scholar 

  25. Trivedi BK, Holmes A, Stober TL, Blankley J, Roark WH, Picard JA, Shaw MK, Essenburg AD, Stanfield RL, Kraus BR (1993) Inhibitors of acyl-Coa: cholesterol acyltransferase. 4. A novel series of urea ACAT inhibitors as potential hypocholesterolemic agents. J Med Chem 36:3300–3307

    Article  CAS  PubMed  Google Scholar 

  26. Harris WS, Dujovne CA, Bergmann K, Neil J, Akester J, Windsor SL, Greene D, Look Z (1990) Effects of the ACAT inhibitor CL 277,082 on cholesterol metabolism in humans. Clin Pharmacol Ther 48:189–194

    Article  CAS  PubMed  Google Scholar 

  27. Peck RW, Wiggs R, Posner J (1994) The tolerability, pharmacokinetics and effect on plasma cholesterol of 447C88, an ACAT inhibitor with low bioavailability, in healthy volunteers. Artherosclerosis 109:155–156

    Article  Google Scholar 

  28. Patankar SJ, Jurs PC (2000) Prediction of IC50 values for ACAT inhibitors from molecular structure. J Chem Inf Comput Sci 40:706–723

    Article  CAS  PubMed  Google Scholar 

  29. Chhabria MT, Mahajan BM, Brahmkshatriya PS (2011) QSAR study of a series of acyl coenzyme a (CoA): cholesterol acyltransferase inhibitors using genetic function approximation. Med Chem Res 20:1573–1580

    Article  CAS  Google Scholar 

  30. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  31. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) Chemical reactivity profiles of two selected polychlorinated biphenyls. J Phys Chem A 107:10346–10352

    Article  CAS  Google Scholar 

  32. Parthasarathi R, Padmanabhan J, Subramanian V, Sarkar U, Maiti B, Chattaraj PK (2003) Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: a DFT approach. Internet Electron J Mol Des 2:798–813

    CAS  Google Scholar 

  33. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols. Chem Res Toxicol 19:356–364

    Article  CAS  PubMed  Google Scholar 

  34. Krause BR, Black A, Bousley R, Essenburg A, Cornicelli J, Holmes A, Homan R, Kieft K, Sekerke C, Shaw-Hes MK, Stanfield R, Trivedi B, Woolf T (1993) Divergent pharmacologic activities of PD 132301-2 and CL 277,082, urea inhibitors of acyl-CoA: cholesterol acyltransferase. J Pharmacol Exp Ther 267:734–743

    CAS  PubMed  Google Scholar 

  35. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  36. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley–VCH, Weinheim

    Book  Google Scholar 

  37. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83:8440–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) GAUSSIAN 09, Revision D .01. Gaussian, Inc., Wallingford

    Google Scholar 

  40. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  43. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  44. Mondal Roy S (2018) Bio-activity of aminosulfonyl ureas in the light of nucleic acid bases and DNA base pair interaction. Comp Biol Chem 75:91–100

    Article  CAS  Google Scholar 

  45. McNaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

Download references

Funding

BKS received UGC-RGNF fellowship (RGNF-2017-18-SC-GUJ-35487). DRR received financial support from the SERB, New Delhi, Govt. of India (Grant No. EMR/2016/005830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sutapa Mondal Roy or Debesh R. Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.M., Sharma, B.K. & Roy, D.R. Biological activity of some ACAT inhibitors in the light of DFT-based quantum descriptors. Struct Chem 30, 2379–2387 (2019). https://doi.org/10.1007/s11224-019-01348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01348-3

Keywords

Navigation