Skip to main content
Log in

New insights into the dihydrogen bonds (MHδ−···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3, CO; X=F, OH, NH2)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Dihydrogen bonds (DHBs) play a fundamental role in catalytic processes, organometallic reaction mechanisms, and potential hydrogen storage materials. In this work, we analyzed the interactions of transition metal (TM) hydrides CpM(PMe3)(L)2H (M=Cr, Mo, W; L=PMe3, CO) with poor, moderate, and strong proton donors HX (NH3, H2O, and HF), and focus on the DHBs in these complexes. All important factors that can affect the DHBs have been considered: transition metal, proton donor, and substituent group. Electrostatic potential (ESP) analysis, topological (atoms in molecules) analysis and noncovalent interactions index (NCI) analysis of the electron density, energy decomposition analysis (EDA) and the effect of electric field were applied to better understand the nature of the DHBs (MHδ−···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3, CO; X=F, OH, NH2). The calculated results showed that both the MHδ−···Hδ+X bonds and M···Hδ+X bonds can form in CpM(PMe3)(L)2H···HX complexes. Electron-rich 5d metal (W in this case) hydrides have a greater chance of forming M···Hδ+X bonds rather than MHδ−···Hδ+X bonds. Cr is more likely to form DHBs than Mo and W. This is a very inspiring finding because this may indicate that the first-row transition metal, which shows low cost, low toxicity, and exceptional synthetic versatility, is more suitable for catalytic hydrogenation. The type of proton donor and the substituting of PMe3 by CO can alter the strength of DHBs. The stronger proton donor involves the stronger DHBs form. The substitution of CO decreases the strength of the dihydrogen bond. Both the electrostatic interaction and the orbital interaction play important roles in DHBs, R (Hδ−···Hδ+) = 1.6 Å seems to be the boundary between these two kinds of interactions. The addition of electric field is conducive to H2 formation for strong DHB complexes, while it has no effect on the weak DHB complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kubas GJ, Ryan RR, Swanson BI et al (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2)(M= molybdenum or tungsten; R= Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 106(2):451–452

    Article  CAS  Google Scholar 

  2. Kubas GJ (1988) Molecular hydrogen complexes: coordination of a sigma bond to transition metals. Acc Chem Res 21(3):120–128

    Article  Google Scholar 

  3. Kubas GJ, Unkefer CJ, Swanson BI et al (1986) Molecular hydrogen complexes of the transition metals. 4. Preparation and characterization of M(CO)3(PR3)22-H2)(M= molybdenum, tungsten) and evidence for equilibrium dissociation of the HH bond to give MH2(CO)3(PR3)2. J Am Chem Soc 108(22):7000–7009

    Article  CAS  Google Scholar 

  4. Van Der Sluys LS, Eckert J, Eisenstein O et al (1990) An attractive cis-effect of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)22-H2)(PEtPh2)3. J Am Chem Soc 112(12):4831–4841

    Article  Google Scholar 

  5. Wasserman HJ, Kubas GJ, Ryan RR (1986) Molecular hydrogen complexes of the transition metals. Preparation, structure, and reactivity of W(CO)3(PCy3)2 and W(CO)3(P-iso-Pr3)2, η2-H2 complex precursors exhibiting metal hydrogen-carbon interaction. J Am Chem Soc 108(9):2294–2301

    Article  CAS  PubMed  Google Scholar 

  6. Kubas GJ (1988) Molecular hydrogen coordination to transition metals. Comments Inorg Chem 7(1):17–40

    Article  CAS  Google Scholar 

  7. Crabtree RH, Hamilton DG (1988) H-H, C-H, and related sigma-bonded groups as ligands. Adv Organomet Chem 28:299–338

    Article  CAS  Google Scholar 

  8. Henderson RA (1988) Dihydrogen complexes of the transition metals. Transit Met Chem 13(6):474–480

    Article  CAS  Google Scholar 

  9. Jessop PG, Morris RH (1992) Reactions of transition metal dihydrogen complexes. Coord Chem Rev 121:155–284

    Article  CAS  Google Scholar 

  10. Szymczak NK, Tyler DR (2008) Aspects of dihydrogen coordination chemistry relevant to reactivity in aqueous solution. Coord Chem Rev 252(1–2):212–230

    Article  CAS  Google Scholar 

  11. Wolstenholme DJ, Titah JT, Che FN et al (2011) Homopolar dihydrogen bonding in alkali-metal amidoboranes and its implications for hydrogen storage. J Am Chem Soc 133(41):16598–16604

    Article  CAS  PubMed  Google Scholar 

  12. Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107(10):4152–4205

    Article  CAS  PubMed  Google Scholar 

  13. Igarashi RY, Laryukhin M, Dos Santos PC et al (2005) Trapping H-bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. J Am Chem Soc 127(17):6231–6241

    Article  CAS  PubMed  Google Scholar 

  14. Lagaditis PO, Sues PE, Lough AJ et al (2015) Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts. Dalton Trans 44(27):12119–12127

    Article  CAS  PubMed  Google Scholar 

  15. Zuo W, Lough AJ, Li YF et al (2013) Amine (imine) diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342(6162):1080–1083

    Article  CAS  PubMed  Google Scholar 

  16. Ogo S, Ichikawa K, Kishima T et al (2013) A functional [NiFe] hydrogenase mimic that catalyzes electron and hydride transfer from H2. Science 339(6120):682–684

    Article  CAS  PubMed  Google Scholar 

  17. Esteruelas MA, Oro LA (1998) Dihydrogen complexes as homogeneous reduction catalysts. Chem Rev 98(2):577–588

    Article  CAS  PubMed  Google Scholar 

  18. Karasik AA, Balueva AS, Musina EI et al (2013) Chelating cyclic aminomethylphosphines and their transition metal complexes as a promising basis of bioinspired mimetic catalysts. Mendeleev Commun 23(5):237–248

    Article  CAS  Google Scholar 

  19. Morris RH (2016) Brønsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem Rev 116(15):8588–8654

    Article  CAS  PubMed  Google Scholar 

  20. Crabtree R (2016) Dihydrogen complexation. Chem Rev 116(15):8750–8769

    Article  CAS  PubMed  Google Scholar 

  21. Belkova NV, Epstein LM, Filippov OA et al (2016) Hydrogen and dihydrogen bonds in the reactions of metal hydrides. Chem Rev 116(15):8545–8587

    Article  CAS  PubMed  Google Scholar 

  22. Grabowski SJ (2011) What is the covalency of hydrogen bonding. Chem Rev 111(4):2597–2625

    Article  CAS  PubMed  Google Scholar 

  23. Rozas I, Alkorta I, Elguero J (1997) Field effects on dihydrogen bonded systems. Chem Phys Lett 275(3–4):423–428

    Article  CAS  Google Scholar 

  24. Liu Q, Hoffmann R (1995) Theoretical aspects of a novel mode of hydrogen-hydrogen bonding. J Am Chem Soc 117(40):10108–10112

    Article  CAS  Google Scholar 

  25. Lough AJ, Park S, Ramachandran R et al (1994) Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir{H(η1-SC5H4NH)}2(PCy3)2]BF4CH2Cl2[J]. J Am Chem Soc 116(18):8356–8357

    Article  CAS  Google Scholar 

  26. Solimannejad M, Scheiner S (2005) Theoretical investigation of the dihydrogen bond linking MH2 with HCCRgF (M= Zn, Cd; Rg= Ar, Kr). J Phys Chem A 109(51):11933–11935

    Article  CAS  PubMed  Google Scholar 

  27. Grabowski SJ (2013) Non-covalent interactions–QTAIM and NBO analysis. J Mol Model 19(11):4713–4721

    Article  CAS  PubMed  Google Scholar 

  28. Filippov OA, Golub IE, Osipova ES et al (2014) Activation of M-H bond upon the complexation of transition metal hydrides with acids and bases. Russ Chem Bull 63(11):2428–2433

    Article  CAS  Google Scholar 

  29. Alkorta I, Elguero J, Grabowski SJ (2008) How to determine whether intramolecular H⋯H interactions can be classified as dihydrogen bonds. J Phys Chem A 112(12):2721–2727

    Article  CAS  PubMed  Google Scholar 

  30. Filippov OA, Belkova NV, Epstein LM et al (2012) Directionality of dihydrogen bonds: the role of transition metal atoms. ChemPhysChem 13(11):2677–2687

    Article  CAS  PubMed  Google Scholar 

  31. Papish ET, Rix FC, Spetseris N et al (2000) Protonation of CpW(CO)2(PMe3)H: is the metal or the hydride the kinetic site. J Am Chem Soc 122(49):12235–12242

    Article  CAS  Google Scholar 

  32. Bullock RM, Song JS, Szalda DJ (1996) Protonation of metal hydrides by strong acids. Formation of an equilibrium mixture of dihydride and dihydrogen complexes from protonation of Cp*Os (CO)2H. Structural characterization of [CpW(CO)2(PMe3)(H)2]+OTf. Organometallics 15(10):2504–2516

    Article  CAS  Google Scholar 

  33. Baya M, Dub PA, Houghton J et al (2008) Investigation of the [Cp*Mo(PMe3)3H]n+(n=0,1) redox pair: dynamic processes on very different time scales. Inorg Chem 48(1):209–220

    Article  CAS  Google Scholar 

  34. Dub PA, Filippov OA, Belkova NV et al (2010) Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO) H and its role in proton transfer. Dalton Trans 39(8):2008–2015

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  37. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  38. Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J Chem Phys 119(21):11099–11112

    Article  CAS  Google Scholar 

  39. Bader RFW, Carroll MT, Cheeseman JR et al (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109(26):7968–7979

    Article  CAS  Google Scholar 

  40. Murray JS, Politzer P (2009) Molecular surfaces, van der Waals radii and electrostatic potentials in relation to noncovalent interactions. Croat Chem Acta 82(1):267–275

    CAS  Google Scholar 

  41. Bulat FA, Toro-Labbé A, Brinck T et al (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  PubMed  Google Scholar 

  42. Popelier P (2000) Atoms in molecules—an introduction. UMIST, Manchester

    Google Scholar 

  43. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  44. Keith TA (2012) AIMALL, 13.02.26. Available at: http://aim.tkgristmill.com

  45. Johnson ER, Keinan S, Mori-Sanchez P et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Contreras-García J, Johnson ER, Keinan S et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  CAS  PubMed  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  49. ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available from:http://www.scm.com

  50. Politzer P, Murray JS (2009) The electrostatic potential as a guide to molecular interactive behavior. Chemical Reactivity Theory: A Density Functional View 17: 243–254

  51. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts 108(3):134–142

    Article  CAS  Google Scholar 

  52. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163

    Article  CAS  Google Scholar 

  53. Peralta-Inga Z, Lane P, Murray JS et al (2003) Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and boron/nitrogen model nanotubes. Nano Lett 3(1):21–28

    Article  CAS  Google Scholar 

  54. Hagelin H, Murray JS, Politzer P et al (1995) Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts. Can J Chem 73(4):483–488

    Article  CAS  Google Scholar 

  55. Kar T, Scheiner S (2003) Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. J Chem Phys 119(3):1473–1482

    Article  CAS  Google Scholar 

  56. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10(2):325–340

    Article  CAS  Google Scholar 

  57. Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10(8):294–300

    Article  CAS  Google Scholar 

  58. Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide asσ-donors and π-acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg Chem 18(7):1755–1759

    Article  CAS  Google Scholar 

  59. Phipps MJS, Fox T, Tautermann CS et al (2015) Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem Soc Rev 44(10):3177–3211

    Article  CAS  PubMed  Google Scholar 

  60. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103(2):304–314

    Article  CAS  Google Scholar 

  61. Kar T, Ángyán JG, Sannigrahi AB (2000) Comparison of ab initio Hartree−Fock and Kohn−Sham orbitals in the calculation of atomic charge, bond index, and valence. J Phys Chem A 104(44):9953–9963

    Article  CAS  Google Scholar 

  62. Firme CL, Antunes OAC, Esteves PM (2009) Relation between bond order and delocalization index of QTAIM. Chem Phys Lett 468(4–6):129–133

    Article  CAS  Google Scholar 

  63. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161

    Article  CAS  Google Scholar 

  64. Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2(CO)10: metal−metal and metal−ligand bond characterization. Inorg Chem 39(11):2360–2366

    Article  CAS  PubMed  Google Scholar 

  65. Cramer D, Kraka E (1984) Chemical bonds without bonding electron density. Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

Download references

Funding

This work was supported by the Education Department Foundation of Hebei Province (Contract No. ZD2018066) and Natural Science Fundation of Hebei Province(B2016205042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Sun or Xiaoyan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Y., Zhang, N., Sun, Z. et al. New insights into the dihydrogen bonds (MHδ−···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3, CO; X=F, OH, NH2). Struct Chem 30, 1819–1830 (2019). https://doi.org/10.1007/s11224-019-01313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01313-0

Keywords

Navigation