Skip to main content
Log in

Clˉ as the halogen bond acceptor: studies on strong halogen bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The Clˉ anion as the halogen bond acceptor, the diiodotetrafluoroethane I(CF2)2I and its derivatives I(MF2)nI (M = C, Si, Ge, Sn) as the halogen bond donor, and the strong halogen bonds could be formed. The halogen bonds between I(MF2)nI and Clˉ have been designed and investigated by Moller–Plesset perturbation/aug-cc-pVDZ calculations together with the aug-cc-pVDZ-pp basis set for iodine and stannum. The halogen bonds in the I(MF2)nI∙∙∙Clˉ complexes are strong, which are apparently related to the group IV elements, becoming stronger along the sequence of M = Si, C, Ge, Sn. Accompanied with increasing number (n) of MF2 unit, the halogen bonds (M = Si, Ge, Sn) also become stronger. The energy decomposition analyses reveal that the exchange energy contributes most in forming these halogen-bonded interactions. In the meantime, the electrostatic energy is also a significant factor for the I∙∙∙Clˉ interactions. The halogen bonds of I(MF2)nI∙∙∙Clˉ(M = C, Ge, Sn) belong to partial-covalent interactions, while they are noncovalent interactions when M = Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cabot R, Hunter CA (2009) Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. Chem Commun 45:2005–2007

    Article  Google Scholar 

  2. Li Q, Li R, Liu Z, Li W, Cheng J (2011) Interplay between halogen bond and lithium bond in MCN-LiCN-XCCH (M = H, Li, and Na; X = Cl, Br, and I) complex: the enhancement of halogen bond by a lithium bond. J Comput Chem 32:3296–3303

    Article  CAS  Google Scholar 

  3. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding—a novel interaction for rational drug design? J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  4. Metrangolo P, Resnati G (2008) Chemistry. Halogen versus hydrogen Science 321:918–919

    CAS  Google Scholar 

  5. Murray JS, Lane P, Clark T, Politzer P (2007) Sigma-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  6. Saha BK, Nangia A, Jaskolski M (2005) Crystal engineering with hydrogen bonds and halogen bonds. CrystEngComm 7:355–358

    Article  CAS  Google Scholar 

  7. Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering 61:105–136

  8. Auffinge P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101: 16789–16794

  9. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon–protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

  10. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The Halogen Bond. Chem Rev 116: 2478−2601

  11. Metrangolo P, Pilati T, Resnati G (2006) Halogen bonding and other noncovalent interactions involving halogens: a terminology issue. CrystEngComm 8:946

    Article  CAS  Google Scholar 

  12. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. J Mol Model 13:291–296

  13. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Sigma-holes, pi-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS (2017) Sigma-holes and pi-holes: similarities and differences. J Comput Chem DOI: 10.1002/jcc.24891

  15. Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. Journal of Computational Science 5:590–596

    Article  Google Scholar 

  16. Bruce DW, Metrangolo P, Meyer F, Präsang C, Resnati G, Terraneo G, Whitwood AC (2008) Mesogenic, trimeric, halogen-bonded complexes from alkoxystilbazoles and 1,4-diiodotetraflu-orobenzene. New J Chem 32:477–482

    Article  CAS  Google Scholar 

  17. Abate A, Saliba M, Hollman DJ, Stranks SD, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith HJ (2014) Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett 14:3247–3254

    Article  CAS  Google Scholar 

  18. Kumar V, Mulder DJ, Cavallo G, Pilati T, Terraneo G, Resnati G, Schenning APHJ, Metrangolo P (2017) Structural characterization of new fluorinated mesogens obtained through halogen-bond driven self-assembly. J Fluor Chem 198:54–60

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford, CT,

    Google Scholar 

  20. Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100:2975–2988

    Article  CAS  Google Scholar 

  21. Bene JED (1993) Proton affinities of NH3, H2O, and HF and their anions—a quest for the basis-set limit using. J Phys Chem 97:107–110

    Article  Google Scholar 

  22. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6808

    Article  CAS  Google Scholar 

  23. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119, 11099–11112

  24. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  25. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  26. Zeng Y, Zhu M, Li X, Zheng S, Meng L (2012). J Comput Chem 33:1321–1327

  27. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum

  28. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  29. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

  30. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:191–206

    Google Scholar 

  31. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  32. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  33. Bader RFW (1990) Atoms in Molecules-A Quantum TheoryOxford University Press: Oxford

  34. Keith TA (2015) AIMAll (Version 15.09.27)

  35. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press

  36. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: Natural Bond Orbital Analysis Program. J Comput Chem 34: 1429–1437

  37. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in sigma-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739–2746

    Article  CAS  Google Scholar 

  38. Lu B, Zhang X, Meng L, Zeng Y (2016) The Pt (II)···Cl Interactions: Nature and Strength. ChemistrySelect 1:5698–5705

  39. Reed AE, Curtiss LA, Weinhold F(1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88: 899–926

  40. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167

    Article  Google Scholar 

  41. Lapointe SM, Farrag S, Bohorquez HJ, Boyd RJ (2009) QTAIM study of an alpha-helix hydrogen bond network. J Phys Chem B 113:10957–10964

    Article  CAS  Google Scholar 

  42. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  43. Popelier PLA (2000) Atoms in molecules: an introduction[M]. Prentice Hall, London,

    Book  Google Scholar 

  44. Li W, Zeng Y, Li X, Sun Z, Meng L (2015) The competition of Y···O and X···N halogen bonds to enhance the group V sigma-hole interaction in the NCY···O=PH3···NCX and O=PH3···NCX···NCY (X, Y=F, Cl, and Br) complexes. J Comput Chem 36:1349–1358

    Article  CAS  Google Scholar 

  45. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  46. Firme CL, Antunes OAC, Esteves PM (2009) Relation between bond order and delocalization index of QTAIM. Chem Phys Lett 468:129–133

    Article  CAS  Google Scholar 

  47. Daudel R (1952) Remarque sur la rôle de l'indiscernabilité des électrons enchimie théorique. Compt Rend Acad Sci 235:886–888

  48. Roux M, Daudel R (1955) Effet de la liaison chimique sur la densité electronique.Cas de la molécule Li2. Compt Rend Acad Sci 240:90–92

  49. Roux M, Besnainou S, Daudel R (1956) Recherches sur la répartition de la densité. J Chem Phys 53:218–221

  50. Li W, Zeng Y, Zhang X, Zheng S, Meng L (2014) The enhancing effects of group V sigma-hole interactions on the F···O halogen bond. Phys Chem Chem Phys 16:19282–19289

    Article  CAS  Google Scholar 

  51. Zheng SJ, Hada M, Nakatsuji H (1996) Topology of density difference and force analysis. Theor Chim Acta 93:67–78

    Article  CAS  Google Scholar 

  52. Li X, Zeng Y, Zhang X, Zheng S, Meng L (2011) Insight into the lithium/hydrogen bonding in (CH2)2X···LiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes. J Mol Model 17:757–767

    Article  CAS  Google Scholar 

  53. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Computational & Theoretical Chemistry 998:2–8

    Article  CAS  Google Scholar 

  54. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Contract Nos: 21371045, 21373075), and the Natural Science Foundation of Hebei Province (Contract Nos: B2015205045, B2015205210). Thanks are also due to the Education Department of Hebei Province of China through innovative hundred talents support program (SLRC2017041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zeng.

Ethics declarations

The manuscript has full control of all primary data, and the authors agree to allow the journal to review their data if requested.

Competing interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, Z., Meng, L. et al. Clˉ as the halogen bond acceptor: studies on strong halogen bonds. Struct Chem 29, 503–511 (2018). https://doi.org/10.1007/s11224-017-1047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1047-3

Keywords

Navigation