Skip to main content
Log in

Theoretical investigation of the nature and strength of simultaneous interactions of π–π stacking and halogen bond including NMR, SAPT, AIM and NBO analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio MP2/aug-cc-pVDZ calculations were performed to investigate mutual effect between π–π stacking and halogen bond interactions in X-ben||pyr···Cl–F complexes (X = CN, F, Cl, Br, CH3, OH and H where || and ··· denote π–π stacking and halogen bonds). The results indicate the cooperativity of π–π stacking and halogen bonds in these complexes. This effect was discussed in terms of the energetic, geometrical parameters and charge-transfer properties of the complexes. To explore on the two-bonded spin–spin coupling constant 2X J(N–F) across 15N···35Cl–19F halogen bond in X-ben||pyr···Cl–F complexes, NMR calculations were performed at PBE0/aug-cc-pVDZ levels of theory. To get more insight into the physical nature of the binding energies, Symmetry Adapted Perturbation Theory calculations were carried out. Energy decomposition indicates that the percentage of the electrostatic term in the halogen bonding system constitutes approximately half of the total attractive binding energies, while the percentage of the dispersion term in the π–π stacking complexes constitutes approximately half of the attractive binding energies. In addition, atoms in molecules, natural bond orbital and molecular electrostatic potential were also used to probe the π–π stacking interactions and halogen bonding strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3

Similar content being viewed by others

References

  1. Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446

    Article  CAS  Google Scholar 

  2. Quinonero D, Frontera A, Deya PM, Alkorta I, Elguero J (2008) Chem Phys Lett 460:406

    Article  CAS  Google Scholar 

  3. Escudero D, Frontera A, Quinonero D, Deya PM (2008) J Phys Chem A 112:6017

    Article  CAS  Google Scholar 

  4. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Article  CAS  Google Scholar 

  5. Zaccheddu M, Filippi C, Buda F (2008) J Phys Chem A 112:1627

    Article  CAS  Google Scholar 

  6. Janowski T, Pulay P (2007) Chem Phys Lett 447:27

    Article  CAS  Google Scholar 

  7. Rashkin MJ, Waters ML (2002) J Am Chem Soc 124:1860

    Article  CAS  Google Scholar 

  8. Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887

    Article  CAS  Google Scholar 

  9. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104

    Article  CAS  Google Scholar 

  10. Lee EC, Hong BH, Lee JY, Kim JC, Kim D, Kim Y, Tarakeshwar P, Kim KS (2005) J Am Chem Soc 127:4530

    Article  CAS  Google Scholar 

  11. Mishra BK, Sathyamurthy N (2005) J Phys Chem A 109:6

    Article  CAS  Google Scholar 

  12. Beg S, Waggoner K, Ahmad Y, Watt M, Lewis M (2008) Chem Phys Lett 455:98

    Article  CAS  Google Scholar 

  13. Sinnokrot MO, Sherrill CD (2003) J Phys Chem A 107:8377

    Article  CAS  Google Scholar 

  14. Busker M, Svartsov YN, Haber T, Kleinermanns K (2009) Chem Phys Lett 467:255

    Article  CAS  Google Scholar 

  15. Versees W, Loverix S, Vandemeulebroucke A (2004) J Mol Biol 338:1

    Article  CAS  Google Scholar 

  16. Ebrahimi A, Habibi-Khorassani M, Gholipour AR, Masoodi HR (2009) Theor Chem Acc 124:115

    Article  CAS  Google Scholar 

  17. Rutledge LR, Campbell-Verduyn LS, Hunter KC, Wetmore SD (2006) J Phys Chem B 110:19652

    Article  CAS  Google Scholar 

  18. Rutledge LR, Campbell-Verduyn LS, Wetmore SD (2007) Chem Phys Lett 444:167 and refernces therein

    Article  CAS  Google Scholar 

  19. Cysewski P (2008) Phys Chem Chem Phys 10:2636

    Article  CAS  Google Scholar 

  20. Hobza P, Sponer J (2002) J Am Chem Soc 124:11802

    Article  CAS  Google Scholar 

  21. Sponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595

    Article  CAS  Google Scholar 

  22. Gu J, Wengb J, Leszczynski J, Xie Y, Schaefer HF (2008) Chem Phys Lett 459:164

    Article  CAS  Google Scholar 

  23. Bhattacharyya R, Samanta U, Chakrabarti P (2002) Protein Eng 17:91

    Article  Google Scholar 

  24. Hong BH, Lee JY, Lee CW, Kim JC, Bae SC, Kim KS (2001) J Am Chem Soc 123:10748

    Article  CAS  Google Scholar 

  25. Kar T, Bettinger HF, Scheiner S, Roy AK (2008) J Phys Chem C 112:20070

    Article  CAS  Google Scholar 

  26. Glusker JP (1998) Design of organic solids, vol 198. Springer, Berlin, p 1

    Book  Google Scholar 

  27. Luo R, Gilson HSR, Potter MJ, Gilson MK (2001) Biophys J 80:140

    Article  CAS  Google Scholar 

  28. Biot C, Wintjens R, Rooman M (2004) J Am Chem Soc 126:6220

    Article  CAS  Google Scholar 

  29. Robertazzi A, Platts JA (2006) J Phys Chem A 110:3992

    Article  CAS  Google Scholar 

  30. Rint DG, Sijbesma P, Zuilhof H (2004) Org Lett 6:3667

    Article  Google Scholar 

  31. Lamoureux JS, Maynes JT, Mark Glover JN (2004) J Mol Biol 335:399

    Article  CAS  Google Scholar 

  32. Wang W, Zhang Y, Wang YB (2012) J Phys Chem A 116:12486

    Article  CAS  Google Scholar 

  33. Estarellas C, Frontera A, QuiÇonero D, Dey PM (2011) Chem Phys Chem 12:2742

    CAS  Google Scholar 

  34. Ji B, Wang W, Deng D, Zhang Y (2011) Cryst Growth Des 11:3622

    Article  CAS  Google Scholar 

  35. Murray JS, Riley AKE, Politzer P, Clark T (2010) Aust J Chem 63:1598

    Article  CAS  Google Scholar 

  36. Clark T (2013) Comput Mol Sci 3:13

    Article  CAS  Google Scholar 

  37. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 2:291

    Article  Google Scholar 

  38. Li H, Lu Y, Liu Y, Zhu X, Liua H, Zhub W (2012) Phys Chem Chem Phys 14:9948

    Article  CAS  Google Scholar 

  39. Ebrahimi A, Habibi M, Neyband RS, Gholipour AR (2009) Phys Chem Chem Phys 11:11424

    Article  CAS  Google Scholar 

  40. Gholipour AR, Saydi H, Neiband MS, Neyband RS (2012) Struct Chem 23:367

    Article  CAS  Google Scholar 

  41. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887

    Article  CAS  Google Scholar 

  42. Bader RFW (1990) Atom in moleculs: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  43. Reed AE, Curtiss LA, Weinhold F (1998) Chem Rev 88:899

    Article  Google Scholar 

  44. Schmidt MW, Baldridge KK, Boat JA, Elbert ST, Gordon, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgo Mery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  45. Hohm U, Maroulis G (2006) J Chem Phys 124:124312

    Article  Google Scholar 

  46. Maroulis G (2000) J Chem Phys 113:1813

    Article  CAS  Google Scholar 

  47. Maroulis G (2008) J Chem Phys 129:044314

    Article  Google Scholar 

  48. Maroulis G (1998) J Chem Phys 108:5432

    Article  CAS  Google Scholar 

  49. Helgaker T, Jaszunski M, Ruud K (1999) Chem Rev 99:293

    Article  CAS  Google Scholar 

  50. Kaupp M, Bühl M, Malkin VG (2004) Calculation of NMR and EPR parameters. Wiley, Weinheim

    Book  Google Scholar 

  51. Virtanen E, Valkonen A, Tamminen J, Kolehmainen E (2003) J Mol Struct 650:201

    Article  CAS  Google Scholar 

  52. Castro C, Karney WL, Vu CMH, Burkhardt SE, Valencia MA (2005) J Org Chem 70:3602

    Article  CAS  Google Scholar 

  53. Ramsey NF (1950) Phys Rev 78:699

    Article  CAS  Google Scholar 

  54. Ramsey NF (1953) Phys Rev 91:303

    Article  CAS  Google Scholar 

  55. Bukowski R, Cencek W, Jankowski P et al (2012) Sequential and parallel versions. University of Delaware, Newark, Delaware, USA; University of Warsaw, Warsaw, Poland

  56. BieglerKonig FW, Schonbohm J, Bayles D, AIM2000 (2001) J Comput Chem 22:545

    Article  Google Scholar 

  57. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679

    Article  CAS  Google Scholar 

  58. Parrish RM, Sherrill CD (2014) J Am Chem Soc 136:17386

    Article  CAS  Google Scholar 

  59. Hohenstein EG, Duan J, Sherrill CD (2014) J Am Chem Soc 133:13244

    Article  Google Scholar 

  60. Sinnokrot MO, Sherrill CD (2006) J Am Chem Soc 110:10656

    CAS  Google Scholar 

  61. Wheeler SE (2011) J Am Chem Soc 133:10262

    Article  CAS  Google Scholar 

  62. Bloom JWG, Raju RK, Wheeler SE (2012) J Chem Theory Comput 8:3167

    Article  CAS  Google Scholar 

  63. Raju RK, Bloom JWG, An Y, Wheeler SE (2011) Chem Phys Chem 12:3116

    CAS  Google Scholar 

  64. Zhu W, Tan X, Shen J, Luo X, Cheng F, Mok PC, Ji R, Chen K, Jiang H (2003) J Phys Chem A 107:2296

    Article  CAS  Google Scholar 

  65. Igumenova TI, Frederick KK, Wand AJ (2006) Chem Rev 106:1672

    Article  CAS  Google Scholar 

  66. Emsley JW, Longeri M, Merlet D, Pileio G, Suryaprakash N (2006) J Magn Reson 180:245

    Article  CAS  Google Scholar 

  67. Del Bene JE, Elguero J (2007) Magn Reson Chem 45:14

    Google Scholar 

  68. Gawinecki R, Kolehmainen E, Dobosz R, Khouzani HL, Chandrasekaran S (2014) J Iran Chem Soc 11:17

    Article  CAS  Google Scholar 

  69. Del Bene JE, Elguero J, Alkorta I (2007) J Phys Chem A 111:3416

    Article  Google Scholar 

  70. Alkorta I, Elguero J, Del Bene JE (2007) J Phys Chem A 111:9924

    Article  CAS  Google Scholar 

  71. Ebrahimi A, Habibi M, Masoodi HR, Gholipour AR (2009) Chem Phys 355:67

    Article  CAS  Google Scholar 

  72. Masoodi HR, Bagheri S (2015) J Iran Chem Soc 12:1883

    Article  CAS  Google Scholar 

  73. Masoodi HR, Ebrahimi A, Habibi M (2009) Chem Phys Lett 483:43

    Article  CAS  Google Scholar 

  74. Del Bene JE, Alkorta I, Elguero J, Sanchez-Sanz G (2011) J Phys Chem A 115:13724

    Article  Google Scholar 

  75. Del Bene JE, Alkorta I, Elguero J (2010) J Phys Chem A 114:12958

    Article  Google Scholar 

  76. Cozzi F, Siegel JS (1995) Pure Appl Chem 67:683

    Article  CAS  Google Scholar 

  77. Masoodi HR, Zakarianezhad M, Bagheri S, Makiabadi B, Shool M (2014) Chem Phys Lett 14:143

    Article  Google Scholar 

  78. Sayyed FB, Suresh CH (2012) Chem Phys Lett 523:11

    Article  CAS  Google Scholar 

  79. Cozzi F, Ponzini F, Annunziata R, Cinquini M, Siegel JS (1995) Angew Chem Int Ed Engl 34:1019

    Article  CAS  Google Scholar 

  80. Matta CF, Castillo N, Boyd RJ (2006) J Phys Chem B 110:563

    Article  CAS  Google Scholar 

  81. Zhikol OA, Shishkin OV, Lyssenko KA, Leszczynski J (2005) J Chem Phys 122:144104

    Article  Google Scholar 

  82. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178 and references therein

    Article  CAS  Google Scholar 

  83. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  84. Murray JS, Riley AKE, Politzer P, Clark T (2010) Aust J Chem 63:159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Gholipour or Saeed Farhadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipour, A., Farhadi, S. & Neyband, R.S. Theoretical investigation of the nature and strength of simultaneous interactions of π–π stacking and halogen bond including NMR, SAPT, AIM and NBO analysis. Struct Chem 27, 1543–1551 (2016). https://doi.org/10.1007/s11224-016-0784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0784-z

Keywords

Navigation