Skip to main content
Log in

A DFT study of inter- and intramolecular proton transfer in 2-selenobarbituric acid tautomers

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT studies were employed to study proton transfer in selenobarbituric acid tautomers in different environments including gas-phase, polarized continuum model (PCM) of solvent and solvent-assisted models. The calculations were performed using WB97XD, CAM-B3LYP and B3LYP methods with the AUG-CC-PVTZ and 6-311++G** basis sets. Among various tautomeric conversions (between ten tautomers), three systems have been selected to study their thermodynamic and kinetic behaviors via proton transfer. The gas-phase calculations showed that only 2-selenoxodihydropyrimidine-4,6(1H,5H)-dione is the major tautomer and the rates of converting this tautomer to the other tautomers are small (<2.73 × 10−14). Using PCM solvation model, the amount of other tautomers versus the major tautomer is increased but the rate constants for proton transfer are slightly decreased. In the solvent-assisted proton transfer, the concentration of the second tautomer (6-hydroxy-2-selenoxo-2,3 dihydropyrimidin-4(1H)-one) was increased to 5 % (in methanol) in comparison with the major tautomer. More importantly, the rate constants for the most of intermolecular proton transfer in solvent-assisted models were intensively increased. Calculated values showed that these processes could be done in solvent-assisted models and other minor tautomers (with different chemical and biological behaviors) could be observed in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Senthilkumar K, Kolandaivel P (2002) Quantum. J Comput Aided Mol Des 16:263–272

    Article  CAS  Google Scholar 

  2. Dorofeeva OV, Marochkin II, Karasev NM, Shishkov IF (2011) Struct Chem 22:419–425

    Article  CAS  Google Scholar 

  3. Alparone A (2014) Spectrochim Acta A 117:669–678

    Article  CAS  Google Scholar 

  4. Grochowski J, Serda P, Markiewicz M, Kozik B, Sepiol JJ (2004) J Mol Struct 689:43–48

    Article  CAS  Google Scholar 

  5. Belova NV, Oberhammer H, Girichev GV, Shlykov SA (2008) J Phys Chem A 112:3209–3214

    Article  CAS  Google Scholar 

  6. Buzykin BI, Mronova EV, Nabiullin VN, Azancheev NM, Awakumova LV, Rizvanov IK, Gubaiduffin AT, Litvinov IA, Syakaev VV (2008) Russ J Gen Chem 78:461–467

    Article  CAS  Google Scholar 

  7. Dobosz R, Kolehmainen E, Valkonen A, Osmiaowski B, Gawinecki R (2007) Tetrahedron 63:9172

    Article  CAS  Google Scholar 

  8. Dubonosov AD, Minkin VI, Bren VA, Shepelenko EN, Tsukanov AV, Starikov AG, Borodkin GS (2008) Tetrahedron 64:3160

    Article  CAS  Google Scholar 

  9. Ralhan S, Ray NK (2003) J Mol Struct 634:83–88

    Article  CAS  Google Scholar 

  10. Brunetti B, Piacente V (1999) J Chem Eng Data 44:809–812

    Article  CAS  Google Scholar 

  11. Senthilkumar K, Kolandaivel P (2002) J Comput Aided Mol Des 16:263–272

    Article  CAS  Google Scholar 

  12. Millefiori S, Millefiori A (1989) J Heterocycl Chem 26:639–644

    Article  CAS  Google Scholar 

  13. Mautner HG, Clayton EF (1959) J Am Chem Soc 81:6270–6273

    Article  CAS  Google Scholar 

  14. Zuccarello F, Buemi G, Gandolfo C, Contino A (2003) Spectrochim Acta A 59:139–151

    Article  Google Scholar 

  15. Gauld JW, Audier H, Fossey J, Radom L (1996) J Am Chem Soc 118:6299–6300

    Article  CAS  Google Scholar 

  16. Maeda S, Matsuda Y, Mizutani Sh, Fujii A, Ohno K (2010) J Phys Chem A 114:11896–11899

    Article  CAS  Google Scholar 

  17. Jaramillo P, Coutinho K, Canuto S (2009) J Phys Chem A 113:12485–12495

    Article  CAS  Google Scholar 

  18. Dedíkova P, Neogrady P, Urban M (2011) J Phys Chem A 115:2350–2358

    Article  Google Scholar 

  19. Melicherčík M, Pašteka LF, Neogrády P, Urban M (2012) J Phys Chem A 116:2343–2351

    Article  Google Scholar 

  20. Rodríguez M, Santillan R, López Y, Farfán N, Barba V, Nakatani K, García Baéz EV (2007) Supramol Chem 19:641–653

    Article  Google Scholar 

  21. Chen PT, Wang CC, Jiang JC, Wang HK, Hayashi M (2011) J Phys Chem B 115:1485–1490

    Article  CAS  Google Scholar 

  22. Rodriquez CF, Cunje A, Shoeib T, Chu IK, Hopkinson AC, Siu KWM (2000) J Phys Chem A 104:5023–5028

    Article  CAS  Google Scholar 

  23. Alan R, Katritzky C, Hall D, Melgendy B, Draghici B (2010) J Comput Aid Mod Des 24:475–484

    Article  Google Scholar 

  24. Tavakol H (2013) J Phys Chem A 117:6809–6816

    Article  CAS  Google Scholar 

  25. Li Dejie, Hongqi A (2009) J Phys Chem B 113:11732–11742

    Article  CAS  Google Scholar 

  26. Tavakol H (2010) Int J Quantum Chem 111:717–3724

    Google Scholar 

  27. Tavakol H (2011) Struct Chem 22:1165–1177

    Article  CAS  Google Scholar 

  28. Li P, Bu Y (2004) J Phys Chem B 108:18088–18097

    Article  CAS  Google Scholar 

  29. Balta B, Aviyente V (2004) J Comput Chem 25:690–703

    Article  CAS  Google Scholar 

  30. Tavakol H, Mollaei-Renani A (2014) Struct Chem 25:1013–1022

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 revision A1. Gaussian Inc, Wallingford

    Google Scholar 

  32. Bhan A, Joshi YV, Delgass WN, Thomson KT (2003) J Phys Chem B 107:10476–10483

    Article  CAS  Google Scholar 

  33. Rozanska X, Santen RAV, Demuth T, Hafner J, Hutschka J (2003) J Phys Chem B 107:1309–1315

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5654

    Article  CAS  Google Scholar 

  35. Lee TC, Yang WT, Parr RG (1988) Phys Rev B 37:785–798

    Article  CAS  Google Scholar 

  36. Mietrus S, Scrocco E (1981) J Chem Phys 55:117–121

    Google Scholar 

  37. Masel RI (2001) Chemical kinetics and catalysis. Wiley, New York

    Google Scholar 

  38. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  39. Miller WH, George TF (1972) J Chem Phys 56:5668–5672

    Article  CAS  Google Scholar 

  40. Ankerhold J, Grossmann F, Tannor D (1999) Phys Chem Chem Phys 1:1333–1342

    Article  CAS  Google Scholar 

  41. Bohm D (1989) Quantum theory. Dover Publications, NewYork

    Google Scholar 

  42. Heima DM, Schleich WP, Alsing PM, Dahl JP, Varro S (2013) Phys Lett A 377:1822–1825

    Article  Google Scholar 

  43. Wigner EZ (1941) Phys Chem 19:203–216

    Google Scholar 

  44. Jolibois F, Grand A, Cadet J, Adamo C, Barone V (1999) Chem Phys Lett 301:255–562

    Article  CAS  Google Scholar 

  45. Di Labio GA, Johanson ER (2007) J Am Chem Soc 129:6199–6203

    Article  Google Scholar 

  46. Tavakol H, Farrokhpour H (2013) J Mol Model 19:3471–3479

    Article  CAS  Google Scholar 

  47. Chandra AK, Uchimaru T, Zeegers-Huyskens (2002) J Mol Struct 605:213–217

    Article  CAS  Google Scholar 

  48. Dejie L, Hongqi A (2009) J Phys Chem B 113:11732–11742

    Article  Google Scholar 

  49. Kyrychenko A, Waluk J (2006) J Phys Chem A 110:11958–11967

    Article  CAS  Google Scholar 

  50. Kryachko ES, Nguyen MT, Huyskens Z (2001) J Phys Chem A 105:1934–1938

    Article  CAS  Google Scholar 

  51. Hu X, Li H, Liang W (2004) J Phys Chem B 108:12999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to National High-Performance Computing Center (NHPCC) at Isfahan University of Technology (http://nhpcc.iut.ac.ir) for providing computational facilities (Rakhsh supercomputer) for our work. This work has been supported by research affair of Isfahan University of technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavakol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakol, H., Keshavarzipour, F. A DFT study of inter- and intramolecular proton transfer in 2-selenobarbituric acid tautomers. Struct Chem 26, 1049–1057 (2015). https://doi.org/10.1007/s11224-015-0567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0567-y

Keywords

Navigation