Skip to main content
Log in

Chemical functionalization of boron nitride nanotube via the 1,3-dipolar cycloaddition reaction of azomethine ylide: a quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The first principle exploration at the M05-2X/6-31+G(d,p) level was performed to investigate the chemical functionalizations of (6,0) zigzag single-walled BNNT via the 1,3-dipolar cycloaddition reaction of azomethine ylide. Two types of functionalized BNNTs (D and A complexes) were found in the reaction between 2-methoxy-N,N-dimethylethanamine (MDE) and BNNT. It is energetically favorable for the MDE functional group to interact with the B–N bonds slanted to the tube axis (in D-type complexes). The configuration of the lowest minimum energy corresponds to geometry D1, which the functional group interacts with the end of N-terminated BNNT. The results show that the functionalization of BNNT by MDE functional group is accompanied by a decrease in the band gap, so that this decrease in A complexes is greater than that in the corresponding D ones. Also, the results obtained by natural bond orbital analysis showed that the charge transfer occurs from nanotube to MDE functional group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes, vol 4. World Scientific, Singapore

    Book  Google Scholar 

  2. White CT, Mintmire JW (2005) Fundamental properties of single-wall carbon nanotubes. J Phys Chem B 109(1):52–65

    Article  CAS  Google Scholar 

  3. Zhang M, Su Z-M, Yan L-K, Qiu Y-Q, Chen G-H, Wang R-S (2005) Theoretical interpretation of different nanotube morphologies among Group III (B, Al, Ga) nitrides. Chem Phys Lett 408(1):145–149

    Article  CAS  Google Scholar 

  4. Chopra NG, Luyken R, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967

    Article  CAS  Google Scholar 

  5. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49(7):5081

    Article  CAS  Google Scholar 

  6. Blase X, Rubio A, Louie S, Cohen M (1994) Stability and band gap constancy of boron nitride nanotubes. EPL (Europhys Lett) 28(5):335–340

    Article  CAS  Google Scholar 

  7. Hamada N, Sawada S-I, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68(10):1579–1581

    Article  CAS  Google Scholar 

  8. Saito R, Fujita M, Dresselhaus G, Dresselhausu M (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60(18):2204–2206

    Article  CAS  Google Scholar 

  9. Esrafili MD, Behzadi H (2013) A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. Struct Chem 24(2):573–581

    Article  CAS  Google Scholar 

  10. Tang C, Bando Y (2003) Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl Phys Lett 83(4):659–661

    Article  CAS  Google Scholar 

  11. Xiao Y, Yan X, Xiang J, Mao Y, Zhang Y, Cao J, Ding J (2004) Specific heat of single-walled boron nitride nanotubes. Appl Phys Lett 84(23):4626–4628

    Article  CAS  Google Scholar 

  12. Tang C, Bando Y, Huang Y, Yue S, Gu C, Xu F, Golberg D (2005) Fluorination and electrical conductivity of BN nanotubes. J Am Chem Soc 127(18):6552–6553

    Article  CAS  Google Scholar 

  13. Zhi C, Bando Y, Tang C, Golberg D (2006) Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. Phys Rev B 74(15):153413

    Article  Google Scholar 

  14. Gou G, Pan B, Shi L (2008) Interaction of iron atoms with pristine and defective (8, 0) boron nitride nanotubes. J Phys Chem C 112(35):13571–13578

    Article  CAS  Google Scholar 

  15. Chen Z-G, Zou J, Li F, Liu G, Tang D-M, Li D, Liu C, Ma X, Cheng H-M, Lu GQ (2007) Growth of magnetic yard-glass shaped boron nitride nanotubes with periodic iron nanoparticles. Adv Funct Mater 17(16):3371–3376

    Article  CAS  Google Scholar 

  16. Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2005) Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew Chem Int Ed 44(48):7932–7935

    Article  CAS  Google Scholar 

  17. Wu X, An W, Zeng XC (2006) Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. J Am Chem Soc 128(36):12001–12006

    Article  CAS  Google Scholar 

  18. Gou G, Pan B, Shi L (2010) Noncovalent functionalization of BN nanotubes with perylene derivative molecules: an ab initio study. ACS Nano 4(3):1313–1320

    Article  CAS  Google Scholar 

  19. Zhou Z, Zhao J, Chen Z, Schleyer PVR (2006) Atomic and electronic structures of fluorinated BN nanotubes: computational study. J Phys Chem B 110(51):25678–25685

    Article  CAS  Google Scholar 

  20. Zhi C, Bando Y, Tang C, Golberg D (2006) SnO2 nanoparticle-functionalized boron nitride nanotubes. J Phys Chem B 110(17):8548–8550

    Article  CAS  Google Scholar 

  21. Li Y, Zhou Z, Zhao J (2008) Functionalization of BN nanotubes with dichlorocarbenes. Nanotechnology 19(1):015202

    Article  Google Scholar 

  22. Ahmadi A, Beheshtian J, Hadipour NL (2011) Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem 22(1):183–188

    Article  CAS  Google Scholar 

  23. J-x Zhao, Y-h Ding (2009) Theoretical studies of chemical functionalization of the (8, 0) boron nitride nanotube with various metalloporphyrin MP (M = Fe Co, Ni, Cu, and Zn) complexes. Mater Chem Phys 116(1):21–27

    Article  Google Scholar 

  24. Z-y Yang, Li Y-F, Zhou Z (2009) Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering. Front Phys China 4:378–382

    Article  Google Scholar 

  25. Roohi H, Nowroozi A-R, Ebrahimi A, Makiabadi B (2010) Effect of CH3CO functional group on the molecular and electronic properties of BN43zz nanotube: a computational chemistry study. J Mol Struct (Thoechem) 952(1):36–45

    Article  CAS  Google Scholar 

  26. Wang W, Bando Y, Zhi C, Fu W, Wang E, Golberg D (2008) Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes. J Am Chem Soc 130(26):8144–8145

    Article  CAS  Google Scholar 

  27. J-x Zhao, Y-h Ding (2010) Theoretical study of noncovalent functionalization of BN nanotubes by various aromatic molecules. Diam Relat Mater 19(7):1073–1077

    Google Scholar 

  28. Velayudham S, Lee CH, Xie M, Blair D, Bauman N, Yap YK, Green SA, Liu H (2010) Noncovalent functionalization of boron nitride nanotubes with poly (p-phenylene-ethynylene) and polythiophene. ACS Appl Mater Interfaces 2(1):104–110

    Article  CAS  Google Scholar 

  29. Saikia N, Pati SK, Deka RC (2012) First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule. Appl Nanosci 2(3):389–400

    Article  CAS  Google Scholar 

  30. Anota EC, Cocoletzi GH, Ramírez JS (2013) Armchair BN nanotubes—levothyroxine interactions: a molecular study. J Mol Model 19(11):4991–4996

    Article  CAS  Google Scholar 

  31. Anota EC, Cocoletzi GH (2013) First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes. J Mol Model 19(6):2335–2341

    Article  Google Scholar 

  32. Georgakilas V, Voulgaris D, Vazquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 124:14318–14319

    Article  CAS  Google Scholar 

  33. Denis PA (2011) Improving the chemical reactivity of single-wall carbon nanotubes with lithium doping. J Phys Chem C 115:20282–20288

    Article  CAS  Google Scholar 

  34. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761

    Article  CAS  Google Scholar 

  35. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand J-P, Prato M (2002) Amino acid functionalization of water soluble carbon nanotubes. Chem Commun 3050–3051.

  36. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  37. Svensson M, Humbel S, Froese R, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions a test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  38. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2:815–826

    Article  CAS  Google Scholar 

  39. Basiuk VA (2003) ONIOM studies of chemical reactions on carbon nanotube tips: effects of the lower theoretical level and mutual orientation of the reactants. J Phys Chem B 107:8890–8897

    Article  CAS  Google Scholar 

  40. Kar T, Akdim B, Duan X, Pachter R (2004) A theoretical study of functionalized single-wall carbon nanotubes: ONIOM calculations. Chem Phys Lett 392:176–180

    Article  CAS  Google Scholar 

  41. Lu X, Tian F, Zhang Q (2003) The [2+1] cycloadditions of dichlorocarbene, silylene, germylene, and oxycarbonylnitrene onto the sidewall of armchair (5,5) single-wall carbon nanotube. J Phys Chem B 107:8388–8391

    Article  CAS  Google Scholar 

  42. Liu LV, Tian WQ, Wang YA (2006) Ozonization at the vacancy defect site of the single-walled carbon nanotube. J Phys Chem B 110:13037–13044

    Article  CAS  Google Scholar 

  43. Tetasang S, Keawwangchai S, Wanno B, Ruangpornvisuti V (2012) Quantum chemical investigation on structures of pyrrolic amides functionalized (5,5) single-walled carbon nanotube and their binding with halide ions. Struct Chem 23:7–15

    Article  CAS  Google Scholar 

  44. Luoxin W, Changhai Y, Hantao Z, Houlei G, Jie X, Weilin X (2011) Initial reactions of methyl-nitramine confined inside armchair (5,5) single-walled carbon nanotube. J Mol Model 17:2751–2758

    Article  Google Scholar 

  45. Lu X, Tian F, Wang N, Zhang Q (2002) The viability of the Diels–Alder (DA) cycloaddition of conjugated dienes onto the sidewalls of single-wall carbon nanotubes is assessed by means of a two-layered ONIOM(B3LYP/6-31G*:AM1) approach. Org Lett 4(24):4313–4315

    Article  CAS  Google Scholar 

  46. Basiuk VA (2002) Reactivity of carboxylic groups on armchair and zigzag carbon nanotube tips: a theoretical study of esterification with methanol. Nano Lett 2(8):835–839

    Article  CAS  Google Scholar 

  47. Xu Y-J, Li J-Q (2005) The interaction of N2 with active sites of a single-wall carbon nanotube. Chem Phys Lett 412:439–443

    Article  CAS  Google Scholar 

  48. Schatz GC (2007) Using theory and computation to model nanoscale properties. Proc Natl Acad Sci USA 104(17):6885–6892

    Article  CAS  Google Scholar 

  49. Torrent M, Vreven T, Musaev DG, Morokuma K, Farkas Ö, Schlegel HB (2002) Effects of the protein environment on the structure and energetics of active sites of metalloenzymes. ONIOM study of methane monooxygenase and ribonucleotide reductase. J Am Chem Soc 124(2):192–193

    Article  CAS  Google Scholar 

  50. Vreven T, Thompson LM, Larkin SM, Kirker I, Bearpark MJ (2012) Deconstructing the ONIOM Hessian: investigating method combinations for transition structures. J Chem Theory Comput 8:4907–4914

    Article  CAS  Google Scholar 

  51. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382

    Article  Google Scholar 

  52. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT 2009.

  53. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106(6):2065–2091

    Article  CAS  Google Scholar 

  54. Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54(6):1423–1430

    Article  CAS  Google Scholar 

  55. Parr RG, Zhou Z (1993) Absolute hardness: unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters. Acc Chem Res 26(5):256–258

    Article  CAS  Google Scholar 

  56. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    Article  CAS  Google Scholar 

  57. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  58. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  59. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64(7):561–567

    Article  CAS  Google Scholar 

  60. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1):104–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Roohi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, H., Jahantab, M., Delcheh, S.R. et al. Chemical functionalization of boron nitride nanotube via the 1,3-dipolar cycloaddition reaction of azomethine ylide: a quantum chemical study. Struct Chem 26, 749–759 (2015). https://doi.org/10.1007/s11224-014-0534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0534-z

Keywords

Navigation