Skip to main content
Log in

Insight into the acidic behavior of oxazolidin-2-one, its thione and selone analogs through computational techniques

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Deprotonation thermochemistry of Oxazolidin-2-one (OXA), Oxazolidine-2-thione (OXA-S), and Oxazolidine-2-selone (OXA-Se) has been studied in order to find the most acidic site and relative acidities of these heterocyclics at various sites. The deprotonation enthalpies at MP2/6-311++G**//MP2/6-31+G* and B3LYP/6-31+G* levels, while the free energies for deprotonation process and pKa values at B3LYP/6-31+G* level both in gas and aqueous phase (using PCM continuum model) of the anions of the three heterocyclics have been computed at 298 K. Calculated aqueous phase pKa values of OXA vary by ~6–7 units from the experimental aqueous phase pKa values of OXA and its derivatives. The deprotonation at the nitrogen is favored in OXA over the carbon atoms in contrast to the OXA-S and OXA-Se where in the deprotonation at the carbon attached to the nitrogen is most preferred. Deprotonation at this carbon induces an important C–O bond rupture in OXA-S and OXA-Se promoting an energetically favored ring-opening process. The finding offers a rare case when C–H acidity is able to dominate over the N–H acidity. In order to explain the relative stabilities, relative acidities and deprotonation enthalpies various characteristics of these molecules as well as their anions such as molecular electrostatic potential surface (MEP), frontier molecular orbital (FMO) features, chemical hardness, softness have been governed. The three dimensional MEP maps and HOMO–LUMO orbitals encompassing these molecules yield a reliable relative stability and reactivity (in terms of acidity) map displaying the most probable regions for deprotonation. The differential distribution of the electrostatic potential over the neutral and anionic species of OXA, OXA-S, and OXA-Se molecules is authentically reflected by HOMO–LUMO orbitals and NBO charge distribution analysis. The lone pair occupancies, second order delocalization energies for orbital interactions and the distribution of atomic charges over the entire molecular framework as obtained from natural bond orbital (NBO) analysis are found to faithfully replicate the predictions from the MEP maps and HOMO–LUMO band gaps in respect of explaining the relative stabilities and acidities in most of the cases. Good linear correlations have been obtained between HOMO–LUMO gap and pKa values in the aqueous phase for OXA and OXA-S molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Isaacs NS (1987) Physical organic chemistry. Longman Scientific & Technical, Wiley, New York

    Google Scholar 

  2. Bell RP (1973) The proton in chemistry. Cornell University Press, Cornell

    Book  Google Scholar 

  3. Caldin E, Gold V (1975) Proton-transfer reactions. Chapman and Hall, London

    Book  Google Scholar 

  4. Westheimer FH (1961) The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium. Chem Rev 61:265–273

    Article  CAS  Google Scholar 

  5. Russell AJ, Thomas PG, Fersht AR (1987) Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering. J Mol Biol 100:803–813

    Article  Google Scholar 

  6. Meot-Ner M (1984) The ionic hydrogen bond. 4. Intramolecular and multiple bonds. Protonation and complexes of amides and amino acid derivatives. J Am Chem Soc 106:278–283

    Article  CAS  Google Scholar 

  7. Mangold M, Rolland L, Costanzo F, Sprik M, Sulpizi M, Blumberger J (2011) Absolute pKa values and solvation structure of amino acids from density functional based molecular dynamics simulation. J Chem Theory Comput 7:1951–1961

    Article  CAS  Google Scholar 

  8. Smith BJ, Radom L (1994) An evaluation of the performance of density functional theory, MP2, MP4, F4, G2(MP2) and G2 procedures in predicting gas-phase proton affinities. Chem Phys Lett 231:345–351

    Article  CAS  Google Scholar 

  9. Donkor KK, Kratochvil BJ (1993) Determination of thermodynamic aqueous acid–base stability constants for several benzimidazole derivatives. Chem Eng Data 38:569–570

    Article  CAS  Google Scholar 

  10. Liptak MD, Shields GC (2001) Accurate pKa calculation for carboxylic acid using complete basis set and Gaussian-n models combined with CPCM continuum solvation method. J Am Chem Soc 123:7314–7319

    Article  CAS  Google Scholar 

  11. Murlowska K, Sadlej-Sosnowska N (2005) Absolute calculations of acidity of C-substituted. Tetrazoles in solution. J Phys Chem A 109:5590–5595

    Article  CAS  Google Scholar 

  12. Josefredo RP, Jose MR (2002) Theoretical calculation of pKa using the cluster-continuum model. J Phys Chem A 106:7434–7439

    Article  Google Scholar 

  13. Soriano E, Cerdan S, Ballesteros P (2004) Computational determination of pKa values. A comparison of different theoretical approaches and novel procedure. J Mol Struct Theochem 684:121–128

    Article  CAS  Google Scholar 

  14. Kapinos LE, Song B, Sigel H (1999) Acid–base and metal-ion-coordinating properties of benzimidazole derivatives (=1,3-dideazapurines) and in aqueous solution: interrelation between complex stability and ligand basicity. Chem Eur J 5:1794

    Article  CAS  Google Scholar 

  15. Woods RJ, Szarek WA, Smith VH (1991) The proton affinities and deprotonation enthalpies of β-d-fructopyranose and α-l-sorbopyranose. Can J Chem 69:1917–1928

    Article  CAS  Google Scholar 

  16. Dewar MJS, Dieter KM (1986) Evaluation of AM1 calculated proton affinities and deprotonation enthalpies. J Am Chem Soc 108:8075–8086

    Article  CAS  Google Scholar 

  17. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  Google Scholar 

  18. Wilson MS, McCloskey JA (1975) Chemical ionization mass spectrometry of nucleosides. Mechanisms of ion formation and estimations of proton affinity. J Am Chem Soc 97:3436–3444

    Article  CAS  Google Scholar 

  19. Li Y, Zhou W, Zhang J, Li S, Gao H, Zhou Z (2011) Theoretical calculation of heats of formation, bond dissociation energies, and gas-phase acidities of fluoromethanes, chloromethanes, and eight other monoderivatives of methane. Comp Theor Chem 968:64–70

    Article  CAS  Google Scholar 

  20. Meyer MM, Kass SR (2010) Experimental and theoretical gas-phase acidities, bond dissociation energies, and heats of formation of HClO(x), x = 1–4. J Phys Chem A 114:4086–4092

    Article  CAS  Google Scholar 

  21. Riffet V, Bouchoux G (2013) Gas-phase structures and thermochemistry of neutral histidine and its conjugated acid and base. Phys Chem Chem Phys 15:6097–6106

    Article  CAS  Google Scholar 

  22. Namazian M, Coote ML (2009) Gas-phase acidity, bond dissociation energy and enthalpy of formation of fluorine-substituted benzenes: a theoretical study. J Fluorine Chem 130:621–628

    Article  CAS  Google Scholar 

  23. Mallard WG, Linstrom PJ (2005). NIST chemistry web-book, NIST standard reference database. National Institute of Standards and Technology, Gaithersburg, MD 2089

  24. Koppel IA, Taft RW, Anvia F, Zhu S-Z, Hu L-Q, Sung K-S, DesMarteau DD, Yagupolskii LM, Yagupolskii YL, Ignatev NV, Kondratenko NV, Volkonskii AY, Vlasov VM, Notario R, Maria P-C (1994) The gas-phase acidities of very strong neutral bronsted acids. J Am Chem Soc 116:3047–3057

    Article  CAS  Google Scholar 

  25. Hurtado M, Lamsabhi AM, Mo O, Yanez M, Guillemin J-C (2012) On the origin of the enhanced acidity of chalcocyclopentadienes (cyclopentadiene chalcogenols) in the gas phase. Chem Phys Chem 13:167–1172

    Google Scholar 

  26. Silks LA III, Peng J, Odom JD, Dunlap RB (1991) An improved synthesis of chiral oxazolidine-2-selones: highly sensitive selenium-77 NMR reagents for the detection and quantitation of chirality. J Org Chem 56:6733–6736

    Article  CAS  Google Scholar 

  27. Frahm AW, Hager HHJ, Bruchhausen FV, Albinus M, Hager H (1999). Hagers Handbuch der pharmazeutischen Praxis: Folgeband 4: Stoffe A-K, Birkhauser

  28. Barbachyn MR, Ford CW (2003) Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Ed 42:2010

    Article  CAS  Google Scholar 

  29. Evans DA, Bartroli J, Shih TL (1981) Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J Am Chem Soc 103:2127–2129

    Article  CAS  Google Scholar 

  30. Ager DJ, Prakash I, Schaad DR (1996) 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 96:835–876

    Article  CAS  Google Scholar 

  31. Hintermann T, Seebach D (1998) A useful modification of the evans auxiliary: 4-isopropyl-5,5-diphenyloxazolidin-2-one. Helv Chim Acta 81:2093–2126

    Article  CAS  Google Scholar 

  32. Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR (1981) Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J Med Chem 51:1981–1990

    Article  Google Scholar 

  33. Perry CM, Javis B (2001) Linezolid: a review of its use in the management of serious gram-positive infections. Drugs 61:525–551

    Article  CAS  Google Scholar 

  34. Means J, Katz S, Nayek A, Anupm R, Hines JV, Bergmeier SC (2006) Structure-activity studies of oxazolidinone analogs as RNA-binding agents. Bioorg Med Chem Lett 16:3600–36004

    Article  CAS  Google Scholar 

  35. Bozdogan B, Appelbaum PC (2004) Oxazolidinones: activity, mode of action and mechanism of resistance. Int J Antimicrob Agents 23:113

    Article  CAS  Google Scholar 

  36. Adams JB, Hockessin D, Geffken D, Rayner DR (1993) Fungicidal oxazolidinones. US Patent no. 5,223,523

  37. Thomas G (2000) Medicinal chemistry: an introduction. Wiley, West Sussex

    Google Scholar 

  38. Wanner KT, Weber U (1997) A convenient synthesis of 1,3-oxazolidin-4-ones and 1,3-oxazine-4-ones. J Heterocycl Chem 34:681–683

    Article  CAS  Google Scholar 

  39. Ortiz A, Sansinenea E (2007) The synthetic versatility of oxazolidinethiones. J Sulfur Chem 28:109–147

    Article  CAS  Google Scholar 

  40. Velazquez F, Olivo HF (2002) The application of chiral oxazolidinethiones and thiazolidinethiones in asymmetric synthesis. Curr Org Chem 6:1–38

    Article  Google Scholar 

  41. Crimmins MT, King BW, Tabet EA, Chaudhary K (2001) Asymmetric aldol additions: use of titanium tetrachloride and (−)-sparteine for the soft enolization of N-acyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones. J Org Chem 66:894–902

    Article  CAS  Google Scholar 

  42. Delaunay D, Toupet L, Le Corre M (1995) Reactivity of β-amino alcohols with carbon disulfide study on the synthesis of 2-oxazolidinethiones and 2-thiazolidinethiones. J Org Chem 60:6604–6607

    Article  CAS  Google Scholar 

  43. Gandhi N, Srivastava BK, Lohray VB, Lohray BB (2004) Oxazolidine-2-thiones: a molecular modeling study. Tetrahedron Lett 45:6269–6272

    Article  CAS  Google Scholar 

  44. Oiarbide M, Dias F, Ortiz A, Linden A (2001) Asymmetric synthesis of β-mercapto carboxylic acid derivatives by intramolecular sulfur transfer in N-enoyl oxazolidine-2-thiones promoted by lewis acids. J Am Chem Soc 123:5602–5603

    Article  Google Scholar 

  45. Cristiani F, Devillanova FA, Diaz A, Verani G (1982) Oxazolidine-2-thione as ligand towards cobalt(II) halides. Spectrochim Acta A-M 38:1303–1305

    Article  Google Scholar 

  46. Wu R, Odom JD, Dunlap RB, Silks LA III (1999) Reaction of alcohols (via the mitsunobu reaction) and alkyl halides with chiral selone derivatizing agents. Tetrahedron Asymmetry 10:1465–1470

    Article  CAS  Google Scholar 

  47. Peng J, Barr ME, Ashburn DA, Lebioda L, Garber AR, Martinez RA, Odom JD, Dunlap RB, Silks LA III (1995) Synthesis and characterization of acylated chiral oxazolidine-2-selones: selone chiral derivatizing agents for the detection and quantitation of remotely disposed chiral centers. J Org Chem 60:5540–5549

    Article  CAS  Google Scholar 

  48. He X, Li J, Lu C, Chen Z, Yang G (2011) Synthesis of a new chiral auxiliary-non-cross-linked polystyrene-supported oxazolidine-2-selone. Can J Chem 89:88–91

    Article  CAS  Google Scholar 

  49. Evans DA, Ennis MD, Mathre DJ (1982) Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives. J Am Chem Soc 104:1737–1739

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng J, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogilaro F, Bearpark M, Heyd J, Brothers E, Kudin VN, Straoverov N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratman RE, Yazyev O, Austin JA, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski G, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford, CT

  51. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  52. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  53. Liptak MD, Shields GC (2001) Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Int J Quantum Chem 85:727–741

    Article  CAS  Google Scholar 

  54. Remko M, Liedl KR, Rode BM (1996) Structure and gas-phase acidity of oxalic acid and its disila derivative. A theoretical study by means of the DFT quantum theoretical method. J Chem Soc Perkin Trans 2:1743–1748

    Article  Google Scholar 

  55. Hawkins GD, Cramer CJ, Truhlar DG (1997) Parametrized model for aqueous free energies of solvation using geometry-dependent atomic surface tensions with implicit electrostatics. J Phys Chem B 101:7147–7157

    Article  CAS  Google Scholar 

  56. Pilego JR Jr (2003) Thermodynamic cycles and the calculation of pKa. Chem Phys Lett 367:145–149

    Article  Google Scholar 

  57. Ben-Naim A (1978) Standard thermodynamics of transfer. Uses and misuse. J Phys Chem 82:792–803

    Article  CAS  Google Scholar 

  58. Tunon I, Silla E, Tomasi J (1992) Methylamines basicity calculations: in vacuo and in solution comparative analysis. J Phys Chem 96:9043

    Article  CAS  Google Scholar 

  59. Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  60. Schuurmann G, Cossi M, Barone V, Tomasi J (1998) Prediction of the pKa of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. J Phys Chem A 102:6706–6712

    Article  Google Scholar 

  61. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683

    Article  CAS  Google Scholar 

  62. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899

    Article  CAS  Google Scholar 

  63. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735

    Article  CAS  Google Scholar 

  64. Murray JS, Sen K (1996) Molecular electrostatic potentials: concepts and applications. Elsevier Science BV, Amsterdam

    Google Scholar 

  65. Kaur D, Sharma R (2012) Factors affecting relative stabilities and proton affinities of oxazolidinone and its N, C5-formyl derivatives. Struct Chem 23:905

    Article  CAS  Google Scholar 

  66. Kaur D, Sharma R (2013) Quantum chemical investigation on the influence of amino substitution on proton affinity of oxazolidin-2-one. Struct Chem. doi:10.1007/s11224-013-0228-y

  67. Biegler-Konig F, Schonbohm J (2002) AIM2000 Version 2.0, Germany

  68. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  69. Bordwell FG (1988) Equilibrium acidities in dimethyl sulfoxide solution. Acc Chem Res 21:456

    Article  CAS  Google Scholar 

  70. Taft RW, Topsom RD (1987) The nature and analysis of substituent effects. Prog Phys Org Chem 16:1

    Article  Google Scholar 

  71. Website.http://www.chemie.unibas.ch/~wegner/links/pkas.pdf

  72. Website. http://www.chemicalbook.com

  73. Website. http://en.chembase.cn

  74. Website. http://www.drugbank.ca/drugs/DB00601

  75. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  76. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are highly thankful to the University Grants Commission India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damanjit Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOC 498 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, D., Sharma, R. Insight into the acidic behavior of oxazolidin-2-one, its thione and selone analogs through computational techniques. Struct Chem 25, 1111–1132 (2014). https://doi.org/10.1007/s11224-013-0382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0382-2

Keywords

Navigation