Skip to main content
Log in

Structural, torsional, vibrational and response electric properties of 2,2′-bitellurophene rotamers. An ab initio and density functional theory investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular structure, conformational behaviour, vibrational spectra and electronic (hyper)polarizabilities of tellurophene and 2,2′-bitellurophene rotamers were determined in gas by correlated ab initio and density functional theory calculations. The torsional potential for the rotation around the C2–C2′ inter-ring bond shows two minima corresponding to anti-gauche and syn-gauche structures and three maxima to planar anti and syn forms and to perpendicular conformation. The potential energy curve is rather flat over the entire 0°–180° twisting range and free rotation cannot be excluded. The IR and Raman spectra of the gauche structures are rather similar to each other, vibrational transitions being scarcely helpful for an unambiguous identification of the rotamers. The dipole moment and the first-order hyperpolarizability increase on passing from the anti-gauche to the syn-gauche conformation by a factor of five and four, respectively. The second harmonic generation nonlinear optical process can be useful to identify the 2,2′-bitellurophene rotamers. On the other hand, the electronic polarizabilities of these structures are much more closer to each other, being predicted to be within 2–13 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zerbi G, Veronelli M, Martina S, Schlüter A-D, Wegner G (1994) π-Electron delocalization in conformationally distorted oligopyrroles and ploypyrrole. Adv Mater 6:385–388

    Article  CAS  Google Scholar 

  2. Hernandez V, Castiglioni C, Del Zoppo M, Zerbi G (1994) Confinement potential and π-electron delocalization in polyconjugated organic materials. Phys Rev B 50:9815–9823

    Article  CAS  Google Scholar 

  3. Brédas JL, Street GB, Thémans B, André J-M (1985) Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): evolution of the electronic properties as a function of the torsion angle between adjacent rings. J Chem Phys 83:1323–1329

    Article  Google Scholar 

  4. Brédas JL, Silbey R (eds) (1991) Conjugated polymers, novel science and technology of conducting and nonlinear active materials. Kluver, New York

    Google Scholar 

  5. Skotheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  6. Ortí E, Viruela PM, Sánchez-Marín J, Tomás F (1995) Ab initio determination of the geometric structure and internal rotation potential of 2,2′-bithiophene. J Phys Chem 99:4955–4963

    Article  Google Scholar 

  7. Millefiori S, Alparone A, Millefiori A (2000) Conformational properties of thiophene oligomers. J Heterocycl Chem 37:847–853

    Article  CAS  Google Scholar 

  8. Raos G, Famulari A, Marcon V (2003) Computational reinvestigation of the bithiophene torsion potential. Chem Phys Lett 379:364–372

    Article  CAS  Google Scholar 

  9. Karpfen A, Ho Choi C, Kertesz M (1997) Single-bond torsional potentials in conjugated systems: a comparison of ab initio and density functional results. J Phys Chem A 101:7426–7433

    Article  CAS  Google Scholar 

  10. Ortí E, Sánchez-Marín J, Merchán M, Tomás F (1987) Theoretical approach to the molecular conformation of nonfused biheterocycles. Bifurans and furylpyrroles. J Phys Chem 91:545–551

    Article  Google Scholar 

  11. Sánchez-Sanz G, Alkorta I, Elguero J (2011) A theoretical study of the conformation of 2,2′-bifuran, 2,2′-bithiophene, 2,2′-bitellurophene and mixed derivatives: Chalcogen–chalcogen interactions or dipole–dipole effects? Comput Theor Chem 974:37–42

    Article  CAS  Google Scholar 

  12. Millefiori S, Alparone A (1998) Theoretical investigation of the structure and conformational behaviour of small selenophene oligomers. Synth Met 95:217–224

    Article  CAS  Google Scholar 

  13. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  14. Samuelsen EJ, Mardalen J (1997) Conductive polymers: spectroscopy and physical properties. In: Nolwa HS (ed) Handbook of organic and conductive molecules and polymers, vol 3. Wiley, New York

    Google Scholar 

  15. Glenis S, Benz M, LeGoff E, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) Polyfuran: a new synthetic approach and electronic properties. J Am Chem Soc 115:12519–12525

    Article  CAS  Google Scholar 

  16. Lopez Navarrete JT, Hernandez V, Zotti G, Veronelli M, Zerbi G (1994) Infrared spectrum of photoexcited polyfuran. Acta Polym 45:124–126

    Article  CAS  Google Scholar 

  17. Brown RD, Croft JG (1973) The microwave spectrum of tellurophene. Chem Phys 1:217–219

    Article  CAS  Google Scholar 

  18. Inoue S, Jigami T, Nozoe H, Otsubo T, Ogura F (1994) 2,2′-Bitellurophene and 2,2′:5′,2″-tertellurophene as novel high homologues of tellurophene. Tetrahedron Lett 35:8009–8012

    Article  CAS  Google Scholar 

  19. Otsubo T, Inoue, Nozoe H, Jigami T, Ogura F (1995) Electrical properties of polymer composties: conducting polymer-polyacene quinone radical polymer. Synth Met 69:357–358

    Article  Google Scholar 

  20. Distefano G, Pignataro S, Innorta G, Fringuelli F, Marino G, Taticchi A (1973) Ionization energies of selenophen, tellurophen and some of their derivatives. Chem Phys Lett 22:132–136

    Article  CAS  Google Scholar 

  21. Schaefer W, Schweig A, Gronowitz S, Taticchi A, Fringuelli F (1973) Reversal in the sequence of two highest occupied molecular orbitals in the series thiophen, selenophen, and tellurophen. J Chem Soc Chem Commun 541–542. http://pubs.rsc.org/en/content/articlelanding/1973/c3/c39730000541#!divAbstract

  22. Fringuelli F, Marino G, Taticchi A, Colonna FP, Distefano G, Pignataro S (1976) Photoelectron spectra of the -substituted derivatives of furan, thiophen, selenophen, and tellurophen. A comparative study of the molecular orbital energies. J Chem Soc Perkin Trans 2:276–279

    Article  Google Scholar 

  23. Modelli A, Jones D, Distefano G, Irgolich KJ, French K, Pappalardo G (1984) Electron transmission spectra of selenophene and tellurophene and Xα computations of electron affinities for chalcophenes. Chem Phys 88:455–461

    Article  CAS  Google Scholar 

  24. Varsányi G, Nyulászi L, Veszpremi T (1982) Vibronic analysis and symmetry of the lowest energy ultraviolet transition of thiophen. J Chem Soc Perkin Trans 2:761–765

    Article  Google Scholar 

  25. Katsumi Y, Yasutaka K, Takelora S, Keichi K (1985) Electrical and optical properties of electrochemically prepared polyselenophene film. Synth Met 10:319–326

    Article  Google Scholar 

  26. Bryce M (1991) Recent progress on conducting organic charge-transfer salts. Chem Soc Rev 20:355–390

    Article  CAS  Google Scholar 

  27. Cowan DO, Mays M, Lee M, McCullough R, Bailey A, Lerstrup K, Wiygul F, Kistenmacher T, Poehler T, Chiang LJ (1985) Tellurium containing organic metals. Mol Cryst Liq Cryst 125:191–204

    Article  CAS  Google Scholar 

  28. Cowan DO, McCullough R, Bailey A, Lerstrup K, Talham D, Herr D, Mays M (1992) Organic metals containing tellurium. Phosphorus Sulphur Silicon Relat Elem 67:277–294

    Article  CAS  Google Scholar 

  29. Tamura R, Nagata Y, Shimizu H, Matsumoto A, Ono N, Kamimura A, Ori K (1993) Novel tellurium-containing p-terphenoquinone analogues: preparation and unique redox properties of paramagnetic tellurium-centered radical cation complexes. Adv Mater 5:719–721

    Article  CAS  Google Scholar 

  30. Møkved EH, Faccin G, Manfrotto D, Kjøsen H, Becker JY, Shapiro L, Ellern A, Berstein J, Khodorkovsky V (1997) Synthesis and properties of novel components for organic metals: dihydrotellurophene derivatives. J Mater Chem 7:1697–1700

    Article  Google Scholar 

  31. Robinson DW, Abdel-Halim H, Inoue S, Kimura M, Cowan DO (1989) Hyperpolarizabilities of 4-amino-4′-nitrodiphenyl sulfide and all of its chalcogen analogues. J Chem Phys 90:3427–3429

    Article  CAS  Google Scholar 

  32. Blenkle M, Boldt P, Brauchle C, Grahn W, Ledoux I, Nerenz H, Stadler S, Wichern J, Zyss J (1996) Chalcogens as electron donors for selected nonlinear optic phores. J Chem Soc Perkin Trans 2:1377–1384

    Article  Google Scholar 

  33. Li DQ, Ratner MA, Marks TJ (1988) Molecular and macromolecular nonlinear optical materials. Probing architecture/electronic structure/frequency doubling relationships via an SCF-LCAO MECI.pi. electron formalism. J Am Chem Soc 110:1707–1715

    Article  CAS  Google Scholar 

  34. Irgolic KJ (1990) In: Klamann D (ed) Organotellurium compounds. Georg Thieme, Stuttgart

    Google Scholar 

  35. Fringuelli F, Marino G, Taticchi A (1977) Tellurophene and related compounds. Adv Heterocycl Chem 21:119–173

    Article  CAS  Google Scholar 

  36. Millefiori S, Alparone A (1998) (Hyper)polarizability of chalcogenophenes C4H4X (X = O, S, Se, Te). Ab initio and density functional theory study. J Mol Struct (Theochem) 431:59–78

    Article  CAS  Google Scholar 

  37. Millefiori S, Alparone A (2000) Theoretical determination of the vibrational and electronic (hyper)polarizabilities of C4H4X (X = O, S, Se, Te) heterocycles. Phys Chem Chem Phys 2:2495–2501

    Article  CAS  Google Scholar 

  38. Kamada K, Ueda, Nagao H, Tawa K, Sugino T, Shmizu Y, Ohta K (2000) Molecular design for organic nonlinear optics: polarizability and hyperpolarizabilities of furan homologues investigated by ab initio molecular orbital method. J Phys Chem A 104:4723–4734

    Article  CAS  Google Scholar 

  39. Jansik B, Schimmelpfennig B, Norman P, Macak P, Ågren H, Ohta K (2003) Relativistic effects on linear and non-linear polarizabilities of the furan homologues. J Mol Struct 633:237–246

    Article  CAS  Google Scholar 

  40. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  41. Lee C, Yang AD, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Wilson PJ, Bradley TJ, Tozer DJ (2001) Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. J Chem Phys 115:9233–9242

    Article  CAS  Google Scholar 

  43. Dunning TH Jr, Hay PJ (1977) In: Schaefer HF III (ed) Methods of electronic structure theory, vol 2. Plenum Press, New York

    Google Scholar 

  44. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  Google Scholar 

  45. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements. J Phys Chem A 105:8111–8116

    Article  CAS  Google Scholar 

  46. Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  47. Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc 105:7037–7047

    Article  CAS  Google Scholar 

  48. Rauhut G, Pulay P (1995) Transferable scaling factors for density functional derived vibrational force fields. J Phys Chem 99:3093–3100

    Article  CAS  Google Scholar 

  49. Johnson RD III (2013) NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101, release 16a. http://cccbdb.nist.gov/. Accessed Aug 2013

  50. Paliani G, Cataliotti R, Poletti A, Fringuelli F, Taticchi A, Giorgini MG (1976) Vibrational analysis of tellurophene and its deuterated derivatives. Spectrochim Acta A 32:1089–1104

    Article  Google Scholar 

  51. Yanai T, Tew D, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  52. Sadlej AJ (1988) Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collect Czechoslov Chem Comm 53:1995–2016

    Article  CAS  Google Scholar 

  53. Sadlej AJ (1992) Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. Theor Chim Acta 81:339–354

    Article  CAS  Google Scholar 

  54. Eckart U, Fülscher MP, Serrano-Andrés L, Sadlej AJ (2000) Static electric properties of conjugated cyclic ketones and thioketones. J Chem Phys 113:6235–6244

    Article  CAS  Google Scholar 

  55. Eckart U, Ingamells VE, Papadopoulos MG, Sadlej AJ (2001) Vibrational effects on electric properties of cyclopropenone and cyclopropenethione. J Chem Phys 114:735–745

    Article  CAS  Google Scholar 

  56. Alparone A, Millefiori S (2005) Gas and solution phase electronic and vibrational (hyper)polarizabilities in the series formaldehyde, formamide and urea: CCSD(T) and DFT theoretical study. Chem Phys Lett 416:282–288

    Article  CAS  Google Scholar 

  57. Alparone A (2011) Comparative study of CCSD(T) and DFT methods: electronic (hyper)polarizabilities of glycine. Chem Phys Lett 514:21–25

    Article  CAS  Google Scholar 

  58. Alparone A (2013) Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers. J Mol Model 19:3095–3102

    Article  CAS  Google Scholar 

  59. Alparone A (2013) The effect of secondary structures on the NLO properties of single chain oligopeptides: a comparison between β-strand and α-helix polyglycines. Phys Chem Chem Phys 15:12958–12962

    Article  CAS  Google Scholar 

  60. Jacquemin D, Perpète EA, Medved’ M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) First hyperpolarizability of polymethineimine with long-range corrected functional. J Chem Phys 126:191108

    Article  CAS  Google Scholar 

  61. Karna SP, Dupuis M (1991) Frequency dependent nonlinear optical properties of molecules: formulation and implementation in the HONDO program. J Comput Chem 12:487–504

    Article  CAS  Google Scholar 

  62. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 revision A.02. Gaussian Inc., Wallingford

  63. Radom L, Pople JA (1970) Molecular orbital theory of the electronic structure of organic compounds. IV. Internal rotation in hydrocarbons using a minimal Slater-type basis. J Am Chem Soc 92:4786–4795

    Article  CAS  Google Scholar 

  64. Salafsky JS (2003) Second-harmonic generation as a probe of conformational change in molecules. Chem Phys Lett 381:705–709

    Article  CAS  Google Scholar 

  65. Xu H-L, Li Z-R, Su Z-M, Muhammad S, Gu F-L, Harigaya K (2009) Knot-isomers of Mobius cyclacene: How does the number of knots influence the structure and first hyperpolarizability? J Phys Chem C 113:15380–15383

    Article  CAS  Google Scholar 

  66. Lipiński J, Bartkowiak W (1999) Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations. Chem Phys 245:263–276

    Article  Google Scholar 

  67. Bartkowiak W, Lipiński J (1998) Conformation and solvent dependence of the first molecular hyperpolarizability of pyridinium-N-phenoxide betaine dyes. Quantum chemical calculations. J Phys Chem A 102:5236–5240

    Article  CAS  Google Scholar 

  68. Kang H, Facchetti A, Jiang H, Cariati E, Righetto S, Ugo R, Zuccaccia C, Macchioni A, Stern CL, Liu Z, Ho S-T, Brown EC, Ratner MA, Marks TJ (2007) Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. J Am Chem Soc 129:3267–3286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alparone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alparone, A. Structural, torsional, vibrational and response electric properties of 2,2′-bitellurophene rotamers. An ab initio and density functional theory investigation. Struct Chem 25, 959–968 (2014). https://doi.org/10.1007/s11224-013-0370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0370-6

Keywords

Navigation