Skip to main content
Log in

A DFT study on structure, stability, and optical property of fullerenols

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The impact of hydroxyl group adsorption on fullerene surface (namely fullerenol) has been systematically investigated in this study using the hybrid density-functional theory calculations. We find that the relative stability of fullerenol clearly depends on the distribution of hydroxyl group on the surface. The eight hydroxyl groups in C20(OH)8 structure show preference to accumulate on two adjoining five-numbered rings. Analysis of reaction energy indicates that the formation of fullerenol from the C20 fullerene and hydroxyl group is energetically favorable. The highly hydroxylated fullerene is found to have high kinetic stability and low chemical reactivity, which is mostly associated with its electron distribution of HOMO and LUMO orbitals. In addition, the electronic structure of the most stable fullerenols has been analyzed by means of the total and partial density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, OflBrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Nano Lett 7:614–619

    Article  CAS  Google Scholar 

  3. Mateo-Alonso A, Iliopoulos K, Couris S, Prato M (2008) J Am Chem Soc 130:1534–1535

    Article  CAS  Google Scholar 

  4. Nagase S, Kobayashi T, Akasaka T, Wakahara T (2000) Fullerenes: chemistry, physics and technology, Chapt 9. In: Nagase S et al. (ed) Endohedral metallofullerenes: theory, electrochemistry, and chemical reactions. Wiley, New York, pp. 395–429

  5. Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  6. Baowan D, Cox BJ, Hill JM (2012) J Mol Model 18:549–557

    Article  CAS  Google Scholar 

  7. Iohara D, Hirayama F, Higashi K, Yamamoto K, Uekama K (2011) Mol Pharm 8:1276–1284

    Article  CAS  Google Scholar 

  8. Xu A, Chai Y, Nohmi T, Hei TK (2009) Part Fibre Toxicol 6:3–13

    Article  Google Scholar 

  9. Bal R, Türk G, Tuzcu M, Yilmaz O, Ozercan I, Kuloglu T, Gür S, Nedzvetsky VS, Tykhomyrov AA, Andrievskyg GV, Baydas G, Naziroglu M (2011) Toxicology 282:69–81

    Article  CAS  Google Scholar 

  10. Bosi S, Ros TD, Spalluto G, Prato M (2003) Eur J Med Chem 38:913–923

    Article  CAS  Google Scholar 

  11. Sofou P, Elemes Y, Panou-Pomonis E, Stavrakoudis A, Tsikaris V, Sakarellos C, Sakarellos-Daitsiotis M, Maggini M, Formaggiob F, Toniolo C (2004) Tetrahedron 60:2823–2828

    Article  CAS  Google Scholar 

  12. Chen Z, Ma K, Wang G, Zhao X, Tang A (2000) Comp Theor Chem 498:227–232

    CAS  Google Scholar 

  13. Jacevic V, Djordjevic-Milic V, Dragojevic-Simic V, Radic N, Govedarica B, Dobric S, Srdjenovic B, Injac R, Djordjevic A, Vasovic V (2007) Toxicol Lett 172:S146

    Google Scholar 

  14. Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Environ Sci Technol 41:6627–6632

    Article  CAS  Google Scholar 

  15. Guirado-López RA, Rincón ME (2006) J Chem Phys 125:154310–154312

    Article  Google Scholar 

  16. Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Fehér T, Forró L (2006) Adv Funct Mater 16:120–128

    Article  CAS  Google Scholar 

  17. Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006) Toxicol Sci 91:173–183

    Article  CAS  Google Scholar 

  18. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  19. Srdjenovic B, Milic-Torres V, Grujic N, Stankov K, Djordjevic A, Vasovic V (2010) Toxicol Mech Method 20:298–305

    Article  CAS  Google Scholar 

  20. Bogdanovića G, Kojića V, Đorđevićb A, Čanadanović-Brunetc J, Vojinović-Miloradovb M, Baltić VV (2004) Toxicol In Vitro 18:629–637

    Article  Google Scholar 

  21. Lu L-H, Lee Y-T, Chen H-W, Chiang LY, Huang H-C (1998) Br J Pharmacol 123:1097–1102

    Article  CAS  Google Scholar 

  22. Kojić V, Jakimov D, Bogdanović G, Djordjević A (2005) Mater Sci Forum 494:543–548

    Article  Google Scholar 

  23. Xu J-Y, Li Q-N, Li J-G, Ran T-C, Wu S-W, Song W-M, Chen S-L, Li W-X (2007) Carbon 45:1865–1870

    Article  CAS  Google Scholar 

  24. Xu J-Y, Han K, Li S-X, Cheng J-S, Xu G-T, Li W-X, Li Q-N (2009) J Appl Toxicol 29:578–584

    Article  CAS  Google Scholar 

  25. Fileti EE, Rivelino R, Mota FdB, Malaspina T (2008) Nanotechnology 19:365703–365707

    Article  Google Scholar 

  26. Zhang G, Liu Y, Liang D, Gan L, Li Y (2010) Angew Chem Int Ed 49:5293–5295

    Article  CAS  Google Scholar 

  27. Cohen AJ, Mori-Sanchez P, Yang W (2012) Chem Rev 112:289–320

    Article  CAS  Google Scholar 

  28. Sabirov DS, Tukhbatullina AA, Bulgakov RG (2012) Comp Theor Chem 993:113–117

    Article  CAS  Google Scholar 

  29. He H, Zheng L, Jin P, Yang M (2011) Comp Theor Chem 974:16–20

    Article  CAS  Google Scholar 

  30. Li X-J, Zhong Z-J, Wu H-Z (2011) J Mol Model 17:2623–2630

    Article  CAS  Google Scholar 

  31. Fileti EE, Rivelino R (2009) Chem Phys Lett 467:339–343

    Article  CAS  Google Scholar 

  32. Rodríguez-Zavala JG, Guirado-López RA (2006) J Phys Chem A 110:9459–9468

    Article  Google Scholar 

  33. Wang B-C, Wang H-W, Tso H-C, Chen T-L, Chou Y-M (2002) J Mol Struct (Theochem) 581:177–186

    Article  CAS  Google Scholar 

  34. Rodríguez-Zavalaa JG, Tenorioa FJ, Samaniegoa C, Méndez-Barrientosa CI, Peña-Leconaa FG, Muñoz-Maciela J, Flores-Morenob R (2011) Mol Phys 109:1771–1783

    Article  Google Scholar 

  35. Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff Bv (2000) Nature 407:60–63

    Article  CAS  Google Scholar 

  36. Scuseria GE (1996) Science 271:942–945

    Article  CAS  Google Scholar 

  37. Ashrafi AR (2005) Chem Phys Lett 406:75–80

    Article  CAS  Google Scholar 

  38. Devos A, Lannoo M (1998) Phys Rev B 58:8236–8239

    Article  CAS  Google Scholar 

  39. Miyamoto Y, Saito M (2001) Phys Rev B 63:161401–161404

    Article  Google Scholar 

  40. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Lu J, Re S, Choe Y-K, Nagase S, Zhou Y, Han R, Peng L, Zhang X, Zhao X (2003) Phys Rev B 67:125415–125417

    Article  Google Scholar 

  43. Leszczynski J, Yanov I (1999) J Phys Chem A 103:396–401

    Article  CAS  Google Scholar 

  44. Takahashi T, Suzuki S, Morikawa T, Katayama-Yoshida H, Hasegawa S, Inokuchi H, Seki K, Kikuchi K, Suzuki S, Ikemoto K, Achiba Y (1992) Phys Rev Lett 68:1232–1235

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford

  46. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839–845

    Article  Google Scholar 

  47. Zhang C, Sun W, Cao Z (2007) J Chem Phys 126:144306–144307

    Article  Google Scholar 

  48. Xing G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K, Su R (2004) J Phys Chem B 108:11473–11479

    Article  CAS  Google Scholar 

  49. Mulliken RS (1955) J Chem Phys 23:1833–1838

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Jun Li or Tian-Zun Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XJ., Yang, XH., Song, LM. et al. A DFT study on structure, stability, and optical property of fullerenols. Struct Chem 24, 1185–1192 (2013). https://doi.org/10.1007/s11224-012-0137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0137-5

Keywords

Navigation