Skip to main content
Log in

Phase Formation Analysis of Ti-Al-C Composite Reinforcement

  • Published:
Strength of Materials Aims and scope

Ti-Al-based multifunctional composite materials are widely analyzed for their outstanding properties—ultra-lightweight, high strength, high temperature, and corrosion resistance. Due to these special and unique properties, the new composite materials are widely used in various applications such as water filters, medical equipment, high-performance gas turbine engines, automobile and aerospace industries, and elsewhere. This work aims to determine the formation of MAX phases involving different systems for samples of TI-Al-C composites of a defined composition based on the research conducted by scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. K. Kothari, R. Radhakrishnan, and N. M. Wereley, “Advances in gamma titanium aluminides and their manufacturing techniques,” Prog Aerosp Sci, 55, 1–16 (2012).

    Article  Google Scholar 

  2. X. Yuan, Y. Cong, Y. Yu, et al., “Unique graphitized mesophase carbon microbead@niobium carbide-derived carbon composites as high-performance anode materials of lithium-ion battery,” Electrochim Acta, 238, 112–119 (2017). https://doi.org/10.1016/j.electacta.2017.04.020

    Article  CAS  Google Scholar 

  3. P.-C. Gao, W.-Y. Tsai, B. Daffos, et al., “Graphene-like carbide derived carbon for high-power supercapacitors,” Nano Energy, 12, 197–206 (2015). https://doi.org/10.1016/j.nanoen.2014.12.017

    Article  CAS  Google Scholar 

  4. G. Yushin, E. N. Hoffman, M. W. Barsoum, et al., “Mesoporous carbide derived carbon with porosity tuned for efficient adsorption of cytokines,” Biomaterials, 27, No. 34, 5755–5762 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  5. J. Gonzalez-Julian, “Processing of MAX phases: from synthesis to applications,” J Am Ceram Soc, 104, 659–690 (2021). https://doi.org/10.1111/jace.17544

    Article  CAS  Google Scholar 

  6. A. D. Bazhina, A. S. Konstantinov, A. P. Chizhikov, et al., “Materials based on the MAX phases of the Ti-Al-C system obtained under combustion and high-temperature shear deformation,” Mater Lett, 318, 132196 (2022). https://doi.org/10.1016/j.matlet.2022.132196

    Article  CAS  Google Scholar 

  7. L. Ye, Z. Liu, S. Li, et al., “Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying,” J Mater Res, 12, 616–618 (1997).

    Article  CAS  Google Scholar 

  8. P. Eklund, M. Beckers, U. Jansson, et al., “The Mn+1AXn Phases: Materials Science and Thin-Film Processing,” Thin Solid Films, 518, 1851–1878 (2010). https://doi.org/10.1016/j.tsf.2009.07.184

    Article  CAS  Google Scholar 

  9. M. Radovic and M. W. Barsoum, “MAX phases: bridging the gap between metals and ceramics,” Am Ceram Soc Bull, 92, No. 3, 20–27 (2013).

    CAS  Google Scholar 

  10. M. W. Barsoum and M. Radovic, “Elastic and mechanical properties of the MAX phases,” Annu Rev Mater Res, 41, No. 1, 195–227 (2011).

    Article  CAS  Google Scholar 

  11. W. Sun, S. A. Shah, Y. Chen, et al., “Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution,” J Mater Chem A, 5, 21663–21668 (2017).

    Article  CAS  Google Scholar 

  12. M. Shekhirev, C. E. Shuck, A. Sarycheva, and Y. Gogotsi, “Characterization of MXenes at every step, from their precursors to single flakes and assembled films,” Prog Mater Sci, 120, 100757 (2021).

    Article  CAS  Google Scholar 

  13. H. Shao, S. Luo, A. Descamps-Mandine, et al., “Synthesis of MAX phase nanofibers and nanoflakes and the resulting MXenes,” Adv Sci, 10, No. 1, 2205509 (2022).

  14. V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, et al., “Thermodynamic description of the Al–C–Ti system,” J Alloy Compd, 623, 480–496 (2015). https://doi.org/10.1016/j.jallcom.2014.10.119

    Article  CAS  Google Scholar 

  15. S. V. Sleptsov, A. A. Bondar, V. T. Witusiewicz, et al., “Cocrystallization of Max-phases in the Ti-Al–C system,” Powder Metall Met Ceram, 54, 471–481 (2015). https://doi.org/10.1007/s11106-015-9738-z

    Article  CAS  Google Scholar 

  16. V.T. Witusiewicz, B. Hallstedt, A.A. Bondar, et al., “Thermodynamic description of the Al–C–Ti system,” J Alloy Compd, 623, 480-496 (2015). https://doi.org/10.1016/j.jallcom.2014.10.119.

    Article  CAS  Google Scholar 

  17. A. Heidarpour, M. Faraji, and 17. A. Haghighi, “Production and characterization of carbide-derived nanocarbon structures obtained by HF electrochemical etching of Ti3AlC2,” Ceram Int, 48, No. 8, 11466–11474 (2022). https://doi.org/10.1016/j.ceramint.2022.01.003

  18. T. Grigorieva, A. Barinova, and N. Lyakhov, “Mechanosynthesis of nanocomposites,” J Nanopart Res, 5, 439–453 (2003).

    Article  CAS  Google Scholar 

  19. M. Song, B. Huang, M. Zhang, and J. Li, “Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al–Ti–C elemental powders,” Int J Refract Met H, 27, 584–589 (2009).

    Article  CAS  Google Scholar 

  20. A. D. Bazhina, P. M. Bazhin, A. P. Chizhikov, et al., “Influence of high-temperature annealing on structure of titanium aluminide materials obtained by combustion and high-temperature shear deformation,” Intermetallics, 139, 107313 (2021). https://doi.org/10.1016/j.intermet.2021.107313

    Article  CAS  Google Scholar 

  21. A. D. Prokopets, P. M. Bazhin, A. S. Konstantinov, et al., “Structural features of layered composite material TiB2/TiAl/Ti6Al4 obtained by unrestricted SHS-compression,” Mater Lett, 300, 130165 (2021). https://doi.org/10.1016/j.matlet.2021.130165

    Article  CAS  Google Scholar 

  22. A. Bazhina, A. Konstantinov, A. Chizhikov, et al., “Structure and mechanical characteristics of a layered composite material based on TiB/TiAl/Ti,” Ceram Int, 48, No. 10, 14295–14300 (2022), https://doi.org/10.1016/j.ceramint.2022.01.318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandrotaitė-Janutienė.

Additional information

Translated from Problemy Mitsnosti, No. 1, p. 127, January – February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandrotaitė-Janutienė, R., Venytė, I., Gegeckienė, L. et al. Phase Formation Analysis of Ti-Al-C Composite Reinforcement. Strength Mater 56, 119–127 (2024). https://doi.org/10.1007/s11223-024-00633-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-024-00633-9

Keywords

Navigation