Skip to main content
Log in

A Physical-Mechanical Model of Ductile Fracture in Irradiated Austenitic Steels

  • SCIENTIFIC AND TECHNICAL SECTION
  • Published:
Strength of Materials Aims and scope

We present the equations that describe nucleation and growth of voids in austenitic steels during deformation under various stress-state triaxiality ratios. The authors put forward a criterion of fracture due to void merging through the plastic instability mechanism in a void-containing material or through the channel mechanism, i.e., shearing of bridges between voids. The equations include two void populations – the deformation-caused voids and the vacancy voids that arise during irradiation and result in the irradiation-induced swelling. The authors perform modeling of the influence of various factors (test temperature, neutron irradiation dose, stress-state triaxiality, irradiation-induced swelling) on plasticity and fracture toughness of material. The calculated results are compared to experimental findings. The influence of the stress-state triaxiality on plasticity of an irradiated material has been clarified. A relation has been found between the strain hardening parameters and plasticity, fracture toughness of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. P. Kursevich, B. Z. Margolin, O. Yu. Prokoshev, and V. I. Kokhonov, “Mechanical properties of austenitic steels under neutron irradiation: the influence of various factors,” Vopr. Materialoved., No. 4 (48), 55–68 (2006).

    Google Scholar 

  2. A. A. Sorokin, B. Z. Margolin, and I. P. Kursevich, “The influence of neutron irradiation on mechanical properties of materials of WWER type reactor internals,” Vopr. Materialoved., No. 2 (66), 131–152 (2011).

    Google Scholar 

  3. V. I. Smirnov, B. Z. Margolin, A. N. Lapin, et al., “A study of the influence of neutron irradiation on fracture toughness of 08Kh18N10T steel and its weld metal,” Vopr. Materialoved., No. 1 (65), 167–183 (2011).

    Google Scholar 

  4. B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part I. Experimental results,” Vopr. Materialoved., No. 2 (58), 89–98 (2009).

    Google Scholar 

  5. B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part II. Physical and mechanical mechanisms of embrittlement,” Vopr. Materialoved., No. 2 (58), 99–111 (2009).

    Google Scholar 

  6. R. M. McMeeking, “Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture initiation,” J. Mech. Phys. Solids, 25, 357–381 (1977).

    Article  CAS  Google Scholar 

  7. B. Z. Margolin, V. I. Kostylev, A. V. Ilyin, and A. I. Minkin, “Simulation of JR-curves for reactor pressure vessels steels on the basis of a ductile fracture model,” Int. J. Press. Vess. Piping, 78, 715–725 (2001).

    Article  CAS  Google Scholar 

  8. D. François, “ESIS TC7D-1-96D. Guidelines for terminology and nomenclature in the field of structural integrity,” Fatigue Fract. Eng. Mater. Struct., 19, No. 12, 1515–1533 (1996).

    Article  Google Scholar 

  9. B. Z. Margolin, G. P. Karzov, V. A. Shvetsova, and V. I. Kostylev, “Modeling for transcrystalline and intercrystalline fracture by void nucleation and growth,” Fatigue Fract. Eng. Mater. Struct., 21, 123–137 (1998).

    Article  CAS  Google Scholar 

  10. B. Z. Margolin, V. I. Kostylev, A. I. Minkin, and A. V. Il’in, “Modeling of ductile crack growth in reactor pressure-vessel steels and determination of JR curves,” Strength Mater., 34, No. 2, 120–130 (2002).

    Article  CAS  Google Scholar 

  11. N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  12. Y. Huang, “Accurate dilatation rates for spherical voids in triaxial stress fields,” Trans. ASME, Ser. E, J. Appl. Mech., 58, 1084–1086 (1991).

    Article  Google Scholar 

  13. F. M. Beremin, “Cavity formation from inclusions in ductile fracture of A508 steel,” Met. Trans., 12A, 723–731 (1981).

    Google Scholar 

  14. B. Z. Margolin and V. A. Shvetsova, “Brittle fracture criterion: structural mechanics approach,” Strength Mater., 24, No. 2, 115–131 (1992).

    Google Scholar 

  15. B. Z. Margolin, V. A. Shvetsova, and G. P. Karzov, “Brittle fracture of nuclear pressure vessel steels. Pt. I. Local criterion for cleavage fracture,” Int. J. Press. Vess. Piping, 72, 73–87 (1997).

    Article  CAS  Google Scholar 

  16. B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Improved probabilistic model for fracture toughness prediction based for nuclear pressure vessel steels,” Int. J. Press. Vess. Piping, 75, 843–855 (1998).

    Article  CAS  Google Scholar 

  17. B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Application of a new cleavage fracture criterion for fracture toughness prediction for RPV steels,” Fatigue Fract. Eng. Mater. Struct., 29, No. 9, 697–713 (2006).

    CAS  Google Scholar 

  18. B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Prometey local approach to brittle fracture: development and application,” Eng. Fract. Mech., 75, 3483–3498 (2008).

    Article  Google Scholar 

  19. B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and E. V. Nesterova, “Brittle fracture local criterion and radiation embrittlement of reactor pressure vessel steels,” Strength Mater., 42, No. 5, 506–527 (2010).

    Article  CAS  Google Scholar 

  20. B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, and V. I. Kostylev, “Development of Prometey local approach and analysis of physical and mechanical aspects of brittle fracture of RPV steels,” Int. J. Press. Vess. Piping, 84, 320–336 (2007).

    Article  Google Scholar 

  21. Effect of Irradiation on Water Reactors Internals, CEA, TECNATOM, VTT, AMES Report No. 11, Paris, June 1997.

  22. T. S. Byun, N. Hashimoto, and K. Farrell, “Deformation mode map of irradiated 316 stainless steel in true stress–dose space,” J. Nucl. Mater., 351, 303–315 (2006).

    Article  CAS  Google Scholar 

  23. C. W. Hunter, R. L. Fish, and J. J. Holmes, “Channel fracture in irradiated EBR-II type 304 stainless steel,” Trans. Amer. Nucl. Soc., 15, No. 1, 254–255 (1972).

    Google Scholar 

  24. V. N. Voevodin and I. M. Neklyudov, Structural-Phase State Evolution and Radiation Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (2006).

    Google Scholar 

  25. N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Irradiation swelling of austenitic stainless steels. The Influence of various factors. Processing of experimental data and formulation of constitutive equations,” Vopr. Materialoved., No. 4 (48), 69–88 (2006).

    Google Scholar 

  26. E. A. Little, “Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel,” J. Nucl. Mater., 139, 261–276 (1986).

    Article  CAS  Google Scholar 

  27. F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA (1966).

    Google Scholar 

  28. V. I. Vladimirov, Physical Nature of Fracture in Materials [in Russian], Metallurgia, Moscow (1984).

    Google Scholar 

  29. P. W. Bridgman, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, New York (1952).

    Google Scholar 

  30. H. Liebowitz (Ed.), Fracture, Vol. 3: Engineering Fundamentals and Environmental Effects, Academic Press, New York–London (1971).

    Google Scholar 

  31. B. Z. Margolin, A. I. Minkin, V. I. Smirnov, and V. I. Fomenko, “Prediction of static fracture toughness for austenitic materials under neutron irradiation conditions,” Vopr. Materialoved., No. 1 (53), 123–138 (2008).

    Google Scholar 

  32. G. R. Odette and G. E. Lucas, “The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels,” J. Nucl. Mater., 179181, 572–576 (1991).

    Article  Google Scholar 

  33. G. E. Lucas, “Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures,” J. Nucl. Mater., 233237, 207–212 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 5 – 30, March – April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, B.Z., Sorokin, A.A. A Physical-Mechanical Model of Ductile Fracture in Irradiated Austenitic Steels. Strength Mater 45, 125–143 (2013). https://doi.org/10.1007/s11223-013-9440-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-013-9440-7

Keywords

Navigation