Skip to main content
Log in

A concept of mechanical stability of structural steels

  • Published:
Strength of Materials Aims and scope

We have developed a new approach to the evaluation of the capability of steels to resist brittle fracture based on the physical ideas concerning the micromechanism of transition of metals from the plastic state into the brittle state. Within the framework of this approach, we propose new microscopic characteristics of stability of the metal, namely, the parameter of mechanical stability and the coefficient of mechanical stability. The procedure of experimental evaluation of these parameters is described and the relationship between the coefficient of mechanical stability and standard characteristics, such as plasticity under uniaxial tension and impact toughness, is analyzed in detail. We introduce a new characteristic called the force equivalent of embrittlement, which enables us to describe, on a single scale, the embrittling action of the following factors of different physical nature: complex stressed state, stress concentration, low temperatures, and dynamical loading. We propose a criterion aimed at the description of stability of the plastic state of the metal at the tip of a macrocrack and develop a procedure of experimental determination of the value of force equivalent of embrittlement for a standard cracked specimen. For the typical representatives of low-, medium-, and high-strength structural steels considered as an example, we study the regularities of the influence of the strength of a steel on the value of the coefficient of mechanical stability. On the basis of these data, we compare structural steels from the viewpoint of their stability under the embrittling action of cracklike defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Beremin, “A local criterion for cleavage fracture of a nuclear pressure vessel steel,” Metal Trans. A, 14, 2277–2287 (1983).

    Article  Google Scholar 

  2. F. Mudry, “A local approach to cleavage fracture,” Nucl. Eng. Des., 105, 65–76 (1987).

    Article  Google Scholar 

  3. G. Bernauer, W. Brocks, and W. Schmitt, “Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel,” Eng. Fract. Mech., 64, 305–325 (1999).

    Article  Google Scholar 

  4. S. Kotrechko and Yu. Ya. Meshkov, “Physical fundamentals of a local approach to analysis of brittle fracture of metals and alloys,” Mater. Sci., 37, No. 4, 583–597 (2001).

    Article  Google Scholar 

  5. S. A. Kotrechko, “A local approach to brittle fracture analysis and its physical interpretation,” Strength Mater., 35, No. 4, 334–345 (2003).

    Article  CAS  Google Scholar 

  6. H. Stockl, R. Boschen, W. Schmitt, et al., “Quantification of the warm prestressing effect in a shape welded 10 MnMoNi 5-5 material,” Eng. Fract. Mech., 67, No. 2, 110–137 (2000).

    Google Scholar 

  7. B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Improved probabilistic model for fracture toughness prediction for nuclear pressure vessel steels,” Int. J. Press. Vess. Piping, 75, No. 12, 843–855 (1998).

    Article  CAS  Google Scholar 

  8. M. Kroon and J. Faleskog, “A probabilistic model for cleavage fracture with a length scale-influence of material parameters and constraint,” Int. J. Fract., 118, 99–118 (2002).

    Article  CAS  Google Scholar 

  9. Ya. B. Fridman, Mechanical Properties of Metals [in Russian], Mashinostroenie, Moscow (1974).

    Google Scholar 

  10. N. N. Davidenko, Dynamical Tests of Metals [in Russian], ONTI, Moscow (1936).

    Google Scholar 

  11. S. A. Kotrechko and Yu. Ya. Meshkov, “A mechanical state of polycrystals. Physical ideas,” Ukr. Fiz. Zh., 36, No. 7, 1087–1094 (1991).

    CAS  Google Scholar 

  12. S. A. Kotrechko, Yu. Ya. Meshkov, and G. S. Mettus, “On the problem of ductile and brittle states of polycrystalline metals,” Metallofizika, 12, No. 6, 3–13 (1990).

    CAS  Google Scholar 

  13. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of stress concentration. Part 3. Toughness of metals and alloys,” Strength Mater., 32, No. 1, 49–62 (2000).

    Article  CAS  Google Scholar 

  14. V. I. Vladimirov, “Actual problems of the theory of generation of dislocation cracks,” Fiz. Met. Metalloved., 30, No. 3, 450–510 (1970).

    Google Scholar 

  15. V. I. Vladimirov, Physical Nature of Fracture of Metals [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  16. S. A. Kotrechko, “A statistical model of brittle fracture of polycrystalline metals,” Metallofiz. Noveish. Tekhnol., 16, No. 10, 37–49 (1994).

    CAS  Google Scholar 

  17. S. A. Kotrechko, “A statistical model of brittle fracture of ferrite-pearlite steels,” Metallofiz. Noveish. Tekhnol., 23, No. 1, 103–122 (2001).

    CAS  Google Scholar 

  18. V. I. Betekhtin, V. I. Vladimirov, A. G. Kadomtsev, and A. I. Petrov, “Plastic strain and fracture of crystalline bodies. Communication 1. Strain and microcrack propagation,” Strength Mater., 11, No. 7, 708–715 (1979).

    Article  Google Scholar 

  19. Yu. Ya. Meshkov and G. A. Pakharenko, Structure of Metal and Brittleness of Steel Articles [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  20. S. R. Bordet, A. D. Karstensen, D. M. Knowles, and C. S. Wiesner, “A new statistical local criterion for cleavage fracture in steel. Pt. I: Model presentation,” Eng. Fract. Mech., 72, 435–452 (2005).

    Article  Google Scholar 

  21. S. R. Bordet, A. D. Karstensen, D. M. Knowles, and C. S. Wiesner, “A new statistical local criterion for cleavage fracture in steel. Pt. II: Application to an offshore structural steel,” Eng. Fract. Mech., 72, 453–474 (2005).

    Article  Google Scholar 

  22. F. Grimpe, J. Heyer, and W. Dahl, “Influence of temperature, strain rate and specimen geometry on the microscopic cleavage fracture stress,” Nucl. Eng. Des., 188, 155–160 (1999).

    Article  CAS  Google Scholar 

  23. S. A. Kotrechko, Yu. Ya. Meshkov, D. I. Nikonenko, and G. S. Mettus, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under the conditions of stress concentration. Part 1. Experimental results,” Strength Mater., 29, No. 4, 319–327 (1997).

    Article  CAS  Google Scholar 

  24. S. A. Kotrechko and Yu. Ya. Meshkov, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of stress concentration. Part 2. Theoretical basis,” Strength Mater., 31, No. 3, 223–231 (1999).

    Article  CAS  Google Scholar 

  25. S. A. Kotrechko, “The critical cleavage stress and ‘brittle’ strength of polycrystalline metals,” Metallofizika, 14, No. 5, 37–41 (1992).

    CAS  Google Scholar 

  26. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in Complex Stressed State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  27. Yu. Ya. Meshkov and T. N. Serditova, Fracture of Deformed Steel [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  28. S. Kotrechko, “Physical fundamentals of a local approach to analysis of cleavage fracture,” in: I. Dlouhy (Ed.), Transferability of Fracture Mechanical Characteristics, Kluwer Academic Publishers, Dordrecht (2002), pp. 135–150.

    Google Scholar 

  29. G. Z. Wang, J. H. Chen, and G. H. Liu, “On the characteristic distance and minimum fracture toughness for cleavage fracture in a C–Mn steel,” Int. J. Fract., 118, 57–76 (2002).

    Article  CAS  Google Scholar 

  30. I. Dlouhy, M. Holzmann, and Z. Chlup, “Fracture resistance of cast ferritic C–Mn steel for container of spent nuclear fuel,” in: I. Dlouhy (Ed.), Transferability of Fracture Mechanical Characteristics, Kluwer Academic Publishers, Dordrecht (2002), pp. 47–64.

    Google Scholar 

  31. H. J. Rathbun, G. R. Odette, T. Yamamoto, and G. E. Lucas, “Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition. A single variable experiment and database,” Eng. Fract. Mech., 73, 134–158 (2006).

    Article  Google Scholar 

  32. H. J. Rathbun, G. R. Odette, M. Y. He, and T. Yamamoto, “Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition. A model based analysis,” Eng. Fract. Mech., 73, 2723–2747 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 55–78, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotrechko, S.A., Meshkov, Y.Y. A concept of mechanical stability of structural steels. Strength Mater 41, 156–173 (2009). https://doi.org/10.1007/s11223-009-9117-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-009-9117-4

Keywords

Navigation