Skip to main content
Log in

Trans-cGAN: transformer-Unet-based generative adversarial networks for cross-modality magnetic resonance image synthesis

  • Research
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging is a widely used medical imaging technology, which can provide different contrasts between the tissues in human body. To use the complementary information from multiple imaging modalities and shorten the time of MR scanning, cross-modality magnetic resonance image synthesis has recently aroused extensive interests in literature. Most existing methods improve the quality of image synthesis by artificially designing loss on the basis of minimizing pixel-wise intensity error, even though it can improve the quality of the synthesized image, it is still difficult to balance the hyperparameters of different loss functions. In this paper, we propose a generative adversarial network (Trans-cGAN) based on transformer and unet for cross-modality magnetic resonance image synthesis. Specifically, transformer block is added into the network to enhance the model’s understanding of the overall semantics of the image as well as to implicitly integrate the edge information. Moreover, spectral normalization is added to the generator and discriminator to avoid mode collapse and ensure the stability of training. Experimental results demonstrate that the proposed Trans-cGAN is superior to the most of the cross-modality MR image synthesis methods in both qualitative and quantitative evaluations. Furthermore, Trans-cGAN also shows excellent generality in the generic image synthesis task of the benchmark datasets of maps and cityscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data associated with this work can be availed from the corresponding author upon formal request.

References

  • Abiko, R., Ikehara, M.: Channel attention GAN trained with enhanced dataset for single-image shadow removal. IEEE Access 10, 12322–12333 (2022). https://doi.org/10.1109/ACCESS.2022.3147063

    Article  Google Scholar 

  • Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, PMLR, pp. 214–223 (2017)

  • Armanious, K., Jiang, C., Fischer, M., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graphics 79(101), 684 (2020). https://doi.org/10.1016/j.compmedimag.2019.101684

    Article  Google Scholar 

  • Benzakoun, J., Deslys, M.A., Legrand, L., et al.: Synthetic flair as a substitute for flair sequence in acute ischemic stroke. Radiology 303(1), 153–159 (2022)

    Article  Google Scholar 

  • Bi, L., Kim, J., Kumar, A., et al.: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (gans). In: Cardoso, M.J., Arbel, T., Gao, F., et al. (eds.) Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment—Fifth International Workshop, CMMI 2017, Second International Workshop,RAMBO 2017, and First International Workshop, SWITCH 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10555, pp 43–51. Springer (2017). https://doi.org/10.1007/978-3-319-67564-0_5

  • Chai, Y., Xu, B., Zhang, K., et al.: MRI restoration using edge-guided adversarial learning. IEEE Access 8, 83858–83870 (2020). https://doi.org/10.1109/ACCESS.2020.2992204

    Article  Google Scholar 

  • Chartsias, A., Joyce, T., Giuffrida, M.V., et al.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37(3), 803–814 (2018). https://doi.org/10.1109/TMI.2017.2764326

    Article  Google Scholar 

  • Chen, J., Lu, Y., Yu, Q., et al.: Transunet: transformers make strong encoders for medical image segmentation. CoRR arxiv:2102.04306 (2021)

  • Clarke, L., Velthuizen, R., Camacho, M., et al.: MRI segmentation: methods and applications. Magn. Reson. Imaging 13(3), 343–368 (1995). https://doi.org/10.1016/0730-725X(94)00124-L

    Article  Google Scholar 

  • Cordier, N., Delingette, H., Lê, M., et al.: Extended modality propagation: image synthesis of pathological cases. IEEE Trans. Med. Imaging 35(12), 2598–2608 (2016). https://doi.org/10.1109/TMI.2016.2589760

    Article  Google Scholar 

  • Cordts, M., Omran, M., Ramos, S., et al.: The cityscapes dataset for semantic urban scene understanding. CoRR arxiv:1604.01685 (2016)

  • Dar, S.U.H., Yurt, M., Karacan, L., et al.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. CoRR arxiv:1802.01221 (2018)

  • Despotovic, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: Challenges, methods, and applications. Comput. Math. Methods Med. 2015, 450341:1-450341:23 (2015). https://doi.org/10.1155/2015/450341

    Article  Google Scholar 

  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. CoRR arxiv:2010.11929 (2020)

  • Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial networks. CoRR arxiv:1406.2661 (2014)

  • Gulrajani, I., Ahmed, F., Arjovsky, M., et al.: Improved training of Wasserstein GANs. CoRR arxiv:1704.00028 (2017)

  • Henry, T., Carré, A., Lerousseau, M., et al.: Brain tumor segmentation with self-ensembled, deeply-supervised 3d U-net neural networks: a brats 2020 challenge solution. In: Crimi, A., Bakas, S., (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries—6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I, Lecture Notes in Computer Science, vol. 12658, pp. 327–339. Springer (2020). https://doi.org/10.1007/978-3-030-72084-1_30

  • Hiasa, Y., Otake, Y., Takao, M., et al.: Cross-modality image synthesis from unpaired data using cyclegan: effects of gradient consistency loss and training data size. CoRR arxiv:1803.06629 (2018)

  • Isola, P., Zhu, J., Zhou, T., et al.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, pp. 5967–5976. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.632

  • Jiang, Y., Chang, S., Wang, Z.: Transgan: two pure transformers can make one strong GAN, and that can scale up. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., et al. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6–14, 2021, virtual, pp. 14745–14758 (2021)

  • Jog, A., Carass, A., Roy, S., et al.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017). https://doi.org/10.1016/j.media.2016.08.009

    Article  Google Scholar 

  • Kim, T., Cha, M., Kim, H., et al.: Learning to discover cross-domain relations with generative adversarial networks. (2017) arxiv:1703.05192

  • Lê, M., Delingette, H., Kalpathy-Cramer, J., et al.: Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans. Med. Imaging 36(3), 815–825 (2017). https://doi.org/10.1109/TMI.2016.2626443

    Article  Google Scholar 

  • Liu, X., Yu, A., Wei, X., et al.: Multimodal MR image synthesis using gradient prior and adversarial learning. IEEE J. Sel. Top. Signal Process. 14(6), 1176–1188 (2020). https://doi.org/10.1109/JSTSP.2020.3013418

    Article  Google Scholar 

  • Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: Hierarchical vision transformer using shifted windows (2021). CoRR arxiv:2103.14030

  • Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). CoRR arxiv:1411.1784

  • Miyato, T., Kataoka, T., Koyama, M., et al.: Spectral normalization for generative adversarial networks (2018). CoRR arxiv:1802.05957

  • Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). CoRR arxiv:1505.04597

  • Schlemper, J., Oktay, O., Schaap, M., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019). https://doi.org/10.1016/j.media.2019.01.012

    Article  Google Scholar 

  • Sui, Y., Afacan, O., Jaimes, C., et al.: Scan-specific generative neural network for MRI super-resolution reconstruction. IEEE Trans. Med. Imaging 41(6), 1383–1399 (2022). https://doi.org/10.1109/TMI.2022.3142610

    Article  Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need (2017). CoRR arxiv:1706.03762

  • Wang, X., Girshick, R.B., Gupta, A., et al.: Non-local neural networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, pp. 7794–7803. Computer Vision Foundation/IEEE Computer Society, (2018a). https://doi.org/10.1109/CVPR.2018.00813

  • Wang, Y., Ma, G., An, L., et al.: Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans. Biomed. Eng. 64(3), 569–579 (2017). https://doi.org/10.1109/TBME.2016.2564440

    Article  Google Scholar 

  • Wang, Y., Yu, B., Wang, L., et al.: 3d conditional generative adversarial networks for high-quality PET image estimation at low dose. NeuroImage 174, 550–562 (2018). https://doi.org/10.1016/j.neuroimage.2018.03.045

    Article  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Wu, C., Zou, Y., Yang, Z.: U-GAN: Generative adversarial networks with U-net for retinal vessel segmentation. In: 2019 14th International Conference on Computer Science & Education (ICCSE), pp. 642–646 (2019). https://doi.org/10.1109/ICCSE.2019.8845397

  • Yang, Q., Li, N., Zhao, Z., et al.: MRI image-to-image translation for cross-modality image registration and segmentation (2018). CoRR arxiv:1801.06940

  • Ye, D.H., Zikic, D., Glocker, B., et al.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013—16th International Conference, Nagoya, Japan, September 22–26, 2013, Proceedings, Part I, Lecture Notes in Computer Science, vol. 8149, pp. 606–613. Springer (2013). https://doi.org/10.1007/978-3-642-40811-3_76

  • Yi, X., Babyn, P.S.: Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J. Digit. Imaging 31(5), 655–669 (2018). https://doi.org/10.1007/s10278-018-0056-0

    Article  Google Scholar 

  • Yu, B., Zhou, L., Wang, L., et al.: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019). https://doi.org/10.1109/TMI.2019.2895894

  • Yu, Y., Xie, Y., Thamm, T., et al.: Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Network Open 3(3), e200772–e200772 (2020). https://doi.org/10.1001/jamanetworkopen.2020.0772, https://arxiv.org/abs/https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2762679/yu_2020_oi_200050_1602778823.39892.pdf

  • Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D.J., Pajdla, T., Schiele, B., et al. (eds.) Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I, Lecture Notes in Computer Science, vol. 8689, pp. 818–833. Springer (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  • Zhang, H., Goodfellow, I.J., Metaxas, D.N., et al.: Self-attention generative adversarial networks (2018). CoRR arxiv:1805.08318

  • Zhao, H., Jiang, L., Jia, J., et al.: Point transformer (2020). CoRR arxiv:2012.09164

  • Zhu, J., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks (2017). CoRR arxiv:1703.10593

  • Zhu, X., Su, W., Lu, L., et al.: Deformable DETR: deformable transformers for end-to-end object detection (2020). CoRR arxiv:2010.04159

Download references

Funding

Financial support:The work was supported by grands from the National Natural Science Foundation of China (No. 11971214, 81960309).

Author information

Authors and Affiliations

Authors

Contributions

YL: Conceptualization, data curation, methodology, software, writing—original draft. NH: Resources, data curation. YQ: Data curation. JZ: Validation, supervision. JS: Validation, supervision, writing—review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jinxia Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental protocols were approved by Medical Ethics Committee of Lanzhou University Second Hospital (approval number: 2022A-650, dated 20 October 2022), all methods were carried out in accordance with relevant guidelines and regulations.

Informed consent

All informed consent was obtained from all subjects and their legguardian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Han, N., Qin, Y. et al. Trans-cGAN: transformer-Unet-based generative adversarial networks for cross-modality magnetic resonance image synthesis. Stat Comput 33, 113 (2023). https://doi.org/10.1007/s11222-023-10282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10282-8

Keywords

Navigation