Skip to main content
Log in

CTA-FPN: Channel-Target Attention Feature Pyramid Network for Prohibited Object Detection in X-ray Images

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Fast and accurate prohibited object detection in X-ray images is great challenging. Based on YOLOv6 object detection framework, in this paper, Channel-Target Attention Feature Pyramid Network (CTA-FPN) is proposed for prohibited object detection in X-ray images. It includes two key components: TAAM (Target Aware Attention Module) and CAM (Channel Attention Module). TAAM is to generate the target attention map to enhance the features of prohibited object regions and suppress those of the background regions, so as to solve the problems of object occlusion and cluttered background in X-ray images. CAM is to highlight the feature channels important to the detection tasks, and suppress the irrelevant ones. The target-wise and channel-wise feature enhancement can effectively strengthen the feature representation capability of the network. The proposed CTA-FPN is incorporated into S, M and L models of YOLOv6 respectively, obtaining three X-ray prohibited object detection models. The experimental results on two publicly available benchmark datasets of SIXray and CLCXray show that, CTA-FPN can effectively improve the detection performance of YOLOv6. Especially, YOLOv6-CTA-FPN-L can achieve the state-of-the-arts detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the [SIXray dataset] repository with [https://github.com/MeioJane/SIXray], the [CLCXray dataset] repository with [https://github.com/Vill-Lab/2022-TIFS-CLCXray].

References

  1. Heitz, G., Chechik G. (2010). Object separation in x-ray image sets. In 2010 IEEE computer society conference on computer vision and pattern recognition, IEEE, San Francisco, CA, USA (pp. 2093–2100). https://doi.org/10.1109/CVPR.2010.5539887

  2. Turcsany, D.,Mouton, A., Breckon, T. P. (2013). Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In 2013 IEEE International conference on industrial technology ICIT (pp. 1140–1145). https://doi.org/10.1109/ICIT.2013.6505833

  3. Huang, S., Wang, X., Chen, Y., Xu, J., Tang, T., & Mu, B. (2019). Modeling and quantitative analysis of X-ray transmission and backscatter imaging aimed at security inspection. Optics Express, 27, 337–349. https://doi.org/10.1364/OE.27.000337

    Article  Google Scholar 

  4. Akcay, S., Breckon, T. P. (2017). An evaluation of region based object detection strategies within X-ray baggage security imagery. In 2017 IEEE International Conference on Image Processing ICIP (pp. 1337–1341). https://doi.org/10.1109/ICIP.2017.8296499

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE conference on computer vision and pattern recognition (pp. 580–587). https://doi.org/10.1109/CVPR.2014.81

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE conference on computer vision and pattern recognition CVPR (pp. 779–788). https://doi.org/10.1109/CVPR.2016.91

  7. Karim, S., Zhang, Y., Yin, S., & Bibi, I. (2021). Auxiliary bounding box regression for object detection in optical remote sensing imagery. Sensing and Imaging, 22, 5. https://doi.org/10.1007/s11220-020-00319-x

    Article  Google Scholar 

  8. Han, Y., & Han, Y. (2021). A deep lightweight convolutional neural network method for real-time small object detection in optical remote sensing images. Sensing and Imaging, 22, 24. https://doi.org/10.1007/s11220-021-00348-0

    Article  Google Scholar 

  9. Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R. R., Cheng, M.-M., & Hu, S.-M. (2022). Attention mechanisms in computer vision: A survey. Computational Visual Media, 8, 331–368. https://doi.org/10.1007/s41095-022-0271-y

    Article  Google Scholar 

  10. Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2020). Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  11. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762

  12. Ma, C., Zhuo, L., Li, J., Zhang, Y., & Zhang, J. (2022). EAOD-Net: Effective anomaly object detection networks for X-ray images. IET Image Process., 16, 2638–2651. https://doi.org/10.1049/ipr2.12514

    Article  Google Scholar 

  13. Wang, M., Du, H., Mei, W., Wang, S., & Yuan, D. (2022). Material-aware cross-channel interaction attention (MCIA) for occluded prohibited item detection. The Visual Computer. https://doi.org/10.1007/s00371-022-02498-y

    Article  Google Scholar 

  14. Wang, Z., Zhang, H., Lin, Z., Tan, X., Zhou, B. (2022). Prohibited items detection in baggage security based on improved YOLOv5. In 2022 IEEE 2nd international conference on software engineering and artificial intelligence (SEAI) (pp. 20–25). https://doi.org/10.1109/SEAI55746.2022.9832407

  15. Ma, C., Zhuo, L., Li, J., Zhang, Y., & Zhang, J. (2023). Occluded prohibited object detection in X-ray images with global context-aware multi-scale feature aggregation. Neurocomputing, 519, 1–16. https://doi.org/10.1016/j.neucom.2022.11.034

    Article  Google Scholar 

  16. Purkait, P., Zhao, C., Zach, C. (2017). SPP-Net: Deep absolute pose regression with synthetic views. arXiv preprint arXiv:1712.03452

  17. Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  18. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J. (2019). Grid R-CNN. In 2019 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 7355–7364). https://doi.org/10.1109/CVPR.2019.00754

  19. Zhang, H., Chang, H., Ma, B., Wang, N., Chen, X. (2020). Dynamic R-CNN: towards high quality object detection via dynamic training. http://arxiv.org/abs/2004.06002

  20. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L., Yuan, Z., Wang, C., Luo, P. (2021). Sparse R-CNN: End-to-end object detection with learnable proposals. In 2021 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 14449–14458). https://doi.org/10.1109/CVPR46437.2021.01422

  21. Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., Fu, Y. (2020). Rethinking classification and localization for object detection. In 2020 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 10183–10192). https://doi.org/10.1109/CVPR42600.2020.01020

  22. Qiao, S., Chen, L.-C., Yuille, A. (2021). DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution. In 2021 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 10208–10219). https://doi.org/10.1109/CVPR46437.2021.01008

  23. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D. (2019). Libra R-CNN: Towards balanced learning for object detection. In 2019 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 821–830). https://doi.org/10.1109/CVPR.2019.00091

  24. Cai, Z., Vasconcelos, N. (2018). Cascade R-CNN: Delving into high quality object detection. In 2018 IEEECVF conference on computer vision and pattern recognition (pp. 6154–6162)https://doi.org/10.1109/CVPR.2018.00644

  25. Redmon, J., Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767

  26. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M. (2020) YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934

  27. Glenn J. (n.d.). yolov5. https://github.com/ultralytics/yolov5

  28. Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., Ding, E., Wen, S. (2020). PP-YOLO: An effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099

  29. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J. (2021). YOLOX: Exceeding YOLO series in 2021. arXiv preprint arXiv:2107.08430

  30. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976

  31. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single shot MultiBox detector. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer vision—ECCV 2016 (pp. 21–37). Cham: Springer.

    Chapter  Google Scholar 

  32. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition CVPR (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594

  33. Tian, Z., Shen, C., Chen, H., He, T. (2019). FCOS: Fully convolutional one-stage object detection. In 2019 IEEECVF international conference on computer vision ICCV (pp. 9626–9635)https://doi.org/10.1109/ICCV.2019.00972

  34. Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., Zhang, Y. (2020). NAS-FCOS: Fast neural architecture search for object detection. In 2020 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 11940–11948). https://doi.org/10.1109/CVPR42600.2020.01196

  35. Kim, K., & Lee, H. S. (2020). Probabilistic anchor assignment with IoU prediction for object detection. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer vision—ECCV 2020 (pp. 355–371). Cham: Springer International Publishing.

    Google Scholar 

  36. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., & Carrasco, M. (2015). GDXray: The database of X-ray images for nondestructive testing. Journal of Nondestructive Evaluation, 34, 1–12. https://doi.org/10.1007/s10921-015-0315-7

    Article  Google Scholar 

  37. Miao, C., Xie, L., Wan, F., Su, C., Liu, H., Jiao, J., Ye, Q. (2019). SIXray: A large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images. In 2019 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 2114–2123). https://doi.org/10.1109/CVPR.2019.00222

  38. Chang, A., Zhang, Y., Zhang, S., Zhong, L., & Zhang, L. (2022). Detecting prohibited objects with physical size constraint from cluttered X-ray baggage images. Knowledge-Based Systems, 237, 107. https://doi.org/10.1016/j.knosys.2021.107916

    Article  Google Scholar 

  39. Zhang, Y., Kong, W., Li, D., & Liu, X. (2020). On Using XMC R-CNN model for contraband detection within X-ray baggage security images. Mathematical Problems in Engineering. https://doi.org/10.1155/2020/1823034

    Article  Google Scholar 

  40. Shao, F., Liu, J., Wu, P., Yang, Z., & Wu, Z. (2022). Exploiting foreground and background separation for prohibited item detection in overlapping X-Ray images. Pattern Recognition, 122, 108261. https://doi.org/10.1016/j.patcog.2021.108261

    Article  Google Scholar 

  41. Wang, Y., & Zhang, L. (2021). Dangerous goods detection based on multi-scale feature fusion in security images. Laser and Optoelectronics Progress, 58, 0810012. https://doi.org/10.3788/LOP202158.0810012

    Article  Google Scholar 

  42. Tao, R., Wei, Y., Jiang, X., Li, H., Qin, H., Wang, J., Ma, Y., Zhang, L., Liu, X. (2021). Towards real-world X-ray security inspection: A high-quality benchmark and lateral inhibition module for prohibited items detection. In 2021 IEEECVF international conference on computer vision ICCV (pp. 10903–10912). https://doi.org/10.1109/ICCV48922.2021.01074

  43. Zhao, C., Zhu, L., Dou, S., Deng, W., & Wang, L. (2022). Detecting overlapped objects in X-ray security imagery by a label-aware mechanism. IEEE Transactions on Information Forensics and Security, 17, 998–1009. https://doi.org/10.1109/TIFS.2022.3154287

    Article  Google Scholar 

  44. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2020). Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318–327. https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  45. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. (2018). Path aggregation network for instance segmentation. In 2018 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 8759-8768). https://doi.org/10.1109/CVPR.2018.00913

  46. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J. (2021). RepVGG: Making VGG-style ConvNets great again. In 2021 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 13728–13737). https://doi.org/10.1109/CVPR46437.2021.01352

  47. Huang, X., Zhuo, L., Zhang, H., Li, X., & Zhang, J. (2022). Lw-TISNet: Light-weight convolutional neural network incorporating attention mechanism and multiple supervision strategy for tongue image segmentation. Sensing and Imaging, 23, 6. https://doi.org/10.1007/s11220-021-00375-x

    Article  Google Scholar 

  48. Li, X., Wang, W., Hu, X., Yang, J. (2019). Selective kernel networks. In: 2019 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 510–519). https://doi.org/10.1109/CVPR.2019.00060

  49. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q. (2020). ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings IEEECVF conference on computer vision and pattern recognition (pp. 11531–11539). https://doi.org/10.1109/CVPR42600.2020.01155

  50. Park, J., Woo, S., Lee, J.-Y., Kweon, I.S. (2018). BAM: Bottleneck attention module. arXiv preprint arXiv:1807.06514

  51. Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional block attention module. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision—ECCV 2018 (pp. 3–19). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  52. He, P., Huang, W., He, T., Zhu, Q., Qiao, Y., Li, X. (2017) Single shot text detector with regional attention. In 2017 IEEE international conference on computer vision ICCV (pp. 3066–3074. https://doi.org/10.1109/ICCV.2017.331

  53. Zhu, K., Wu, J. (2021) Residual attention: A simple but effective method for multi-label recognition. In 2021 IEEECVF IEEE/CVF international conference on computer vision ICCV (pp. 184–193). https://doi.org/10.1109/ICCV48922.2021.00025

  54. Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang, L. (2021) Dynamic head: Unifying object detection heads with attentions. In: 2021 IEEECVF conference on computer vision and pattern recognition (pp. 7369–7378). https://doi.org/10.1109/CVPR46437.2021.00729

  55. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S. (2017) Feature pyramid networks for object detection. In 2017 IEEE conference on computer vision and pattern recognition CVPR (pp. 936–944). https://doi.org/10.1109/CVPR.2017.106

  56. Hou, Q., Zhou, D., Feng, J. (2021) Coordinate attention for efficient mobile network design. In 2021 IEEECVF conference on computer vision and pattern recognition CVPR (pp. 13708–13717). https://doi.org/10.1109/CVPR46437.2021.01350

  57. Wei, Y., Tao, R., Wu, Z., Ma, Y., Zhang, L., Liu, X. (2020) Occluded prohibited items detection: An X-ray security inspection benchmark and de-occlusion attention module. In Proceedings of the 28th ACM international conference on multimedia (pp. 138–146). New York: Association for Computing Machinery. https://doi.org/10.1145/3394171.3413828

  58. Webb, T. W., Bhowmik, N., Gaus, Y. F.A., Breckon, T. P. (2021) Operationalizing convolutional neural network architectures for prohibited object detection in X-Ray imagery. In 2021 20th IEEE international conference on machine learning and applications ICMLA (pp. 610–615). https://doi.org/10.1109/ICMLA52953.2021.00102

  59. Ma, C., Zhuo, L., Li, J., Zhang, Y., Zhang, J. (2022). Prohibited object detection in X-ray images with dynamic deformable convolution and adaptive IoU. In 2022 IEEE international conference on image processing (ICIP) (pp. 1-5)

Download references

Acknowledgements

This work in this paper is supported by the R&D Program of Beijing Municipal Education Commission (No.KZ202210005007), the Beijing Natural Science Foundation (No.L211017), the General Program of Beijing Municipal Education Commission (No.KM202110005027).

Author information

Authors and Affiliations

Authors

Contributions

YZ: conceptualization, methodology, software, investigation, writing-original draft preparation. LZ: conceptualization, supervision, writing-reviewing and editing, funding acquisition. CM: software, investigation, validation. YZ: software, investigation. JL: resources, funding acquisition.

Corresponding author

Correspondence to Li Zhuo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhuo, L., Ma, C. et al. CTA-FPN: Channel-Target Attention Feature Pyramid Network for Prohibited Object Detection in X-ray Images. Sens Imaging 24, 14 (2023). https://doi.org/10.1007/s11220-023-00416-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-023-00416-7

Keywords

Navigation