Skip to main content
Log in

Spray Deposited ZnO Nanograins for Enzyme-Free Detection of Sarcosine

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Sarcosine is one of the known small molecule biomarkers to detect prostate cancer effectively. In the present work, we presented a very simple procedure and low-cost non-enzymatic method for the detection of Sarcosine. Zinc oxide (ZnO) nanoparticles were successfully synthesized, characterized and elucidated the morphology on the Indium tin oxide (ITO) surface, which showed uniform arrangement with a spherical shape. The ITO working electrode modified with ZnO exhibits better analytical characteristics for Sarcosine sensing with a linear range between 5 and 100 nM. The limit of detection was found to be low (7.5 nM) with excellent sensitivity and possess quick response time. Due to its high specificity and repeatability, the ITO/ZnO working electrode does not interfere with the other amino acids in the real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Villers, A., & Grosclaude, P. (2008). Épidémiologie du cancer de la prostate. Article de revue. Medecine Nucleaire, 32(1), 2–4. https://doi.org/10.1016/j.mednuc.2007.11.003

    Article  Google Scholar 

  2. Stavridis, S., Saidi, S., Lekovski, L. J., Dohcev, S., & Spasovski, G. (2010). Screening for prostate cancer: A controversy or fact. Hippokratia, 14(3), 170–175

    Google Scholar 

  3. Smith, R. A., von Eschenbach, A. C., Wender, R., Levin, B., Byers, T., Rothenberger, D., & Eyre, H., (2001). American Cancer Society Guidelines for the Early Detection of Cancer: Update of Early Detection Guidelines for Prostate, Colorectal, and Endometrial Cancers: ALSO: Update 2001--Testing for Early Lung Cancer Detection. CA: A Cancer Journal for Clinicians, 51(1), 38–75. https://doi.org/10.3322/canjclin.51.1.38

    Article  Google Scholar 

  4. Tang, Z., Huang, J., He, H., Ma, C., & Wang, K. (2020). Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coordination Chemistry Reviews, 415, 213317. https://doi.org/10.1016/j.ccr.2020.213317

    Article  Google Scholar 

  5. Sheydaei, O., Khajehsharifi, H., & Rajabi, H. R. (2020). Rapid and selective diagnose of Sarcosine in urine samples as prostate cancer biomarker by mesoporous imprinted polymeric nanobeads modified electrode. Sensors and Actuators, B: Chemical, 309, 127559. https://doi.org/10.1016/j.snb.2019.127559

    Article  Google Scholar 

  6. Ideo, H., Kondo, J., Nomura, T., Nonomura, N., Inoue, M., & Amano, J. (2020). Study of glycosylation of prostate-specific antigen secreted by cancer tissue-originated spheroids reveals new candidates for prostate cancer detection. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-59622-y

    Article  Google Scholar 

  7. Ryoo, H., Kang, M. Y., Sung, H. H., Jeong, C., Seo, B., Il, S.Jeon, H. G., (2020). Detection of prostate cancer using prostate imaging reporting and data system score and prostate-specific antigen density in biopsy-naive and prior biopsy-negative patients. Prostate International, 8(3), 125–129. https://doi.org/10.1016/j.prnil.2020.03.003

    Article  Google Scholar 

  8. Gao, X., Bao, T., Yang, H., Lei, Y., Jiang, X., Huang, Y., & Tang, H. (2020). The association of metabolic syndrome and its components with serum prostate-specific antigen levels. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP), 29(1), 36–41. https://doi.org/10.1097/CEJ.0000000000000508

    Article  Google Scholar 

  9. Lu, Y. C., Huang, C. Y., Lu, Y. C., Huang, K. H., Chow, P. M., Chang, Y. K., & Hong, J. H., (2021). Association between low prostate-specific antigen levels and greater disease progression in high-grade locally-advanced prostate cancer. Journal of the Formosan Medical Association, 120(1), 483–491. https://doi.org/10.1016/j.jfma.2020.06.021

    Article  Google Scholar 

  10. Raciti, P., Sue, J., Ceballos, R., Godrich, R., Kunz, J. D., Kapur, S., & Fuchs, T. J., (2020). Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Modern Pathology, 33(10), 2058–2066. https://doi.org/10.1038/s41379-020-0551-y

    Article  Google Scholar 

  11. McNally, C. J., Ruddock, M. W., Moore, T., & McKenna, D. J. (2020). Biomarkers that differentiate benign prostatic hyperplasia from prostate cancer: A literature review. Cancer Management and Research, 12, 5225–5241. https://doi.org/10.2147/CMAR.S250829

    Article  Google Scholar 

  12. Rodríguez, S. V. M., & García-Perdomo, H. A. (2020). Diagnostic accuracy of prostate cancer antigen 3 (PCA3) prior to first prostate biopsy: A systematic review and meta-analysis. Canadian Urological Association Journal, 14(5), E214–E219

    Google Scholar 

  13. Biswas, A., Rajesh, Y., Mitra, P., & Mandal, M. (2020). ETV6 gene aberrations in non-haematological malignancies: A review highlighting ETV6 associated fusion genes in solid tumors. Biochimica et Biophysica Acta - Reviews on Cancer, 1874(1), 188389. https://doi.org/10.1016/j.bbcan.2020.188389

    Article  Google Scholar 

  14. Prensner, J. R., Rubin, M. A., Wei, J. T., & Chinnaiyan, A. M. (2012). Beyond PSA: The next generation of prostate cancer biomarkers. Science Translational Medicine . https://doi.org/10.1126/scitranslmed.3003180.

    Article  Google Scholar 

  15. Chen, J., Zhang, J., Zhang, W., & Chen, Z. (2014). Sensitive determination of the potential biomarker sarcosine for prostate cancer by LC-MS with N,N’-dicyclohexylcarbodiimide derivatization. Journal of Separation Science, 37(1–2), 14–19. https://doi.org/10.1002/jssc.201301043

    Article  Google Scholar 

  16. Rubin, M. A., Zhou, M., Dhanasekaran, S. M., Varambally, S., Barrette, T. R., Sanda, M. G., & Chinnaiyan, A. M. (2002). α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. Journal of the American Medical Association, 287(13), 1662–1670. https://doi.org/10.1001/jama.287.13.1662

    Article  Google Scholar 

  17. Kosari, F., Asmann, Y. W., Cheville, J. C., & Vasmatzis, G. (2002). Cysteine-rich secretory protein-3: A potential biomarker for prostate cancer. Cancer Epidemiology Biomarkers and Prevention, 11(11), 1419–1426

    Google Scholar 

  18. Cheng, T., Li, F., Wei, R., Lv, M., qin, Zhou, Y., Dai, Y., & Gao, Q., (2017). MMP26: A potential biomarker for prostate cancer. Journal of Huazhong University of Science and Technology—Medical Science, 37(6), 891–894. https://doi.org/10.1007/s11596-017-1823-8

    Article  Google Scholar 

  19. Jentzmik, F., Stephan, C., Miller, K., Schrader, M., Erbersdobler, A., Kristiansen, G., & Jung, K. (2010). Sarcosine in Urine after Digital Rectal Examination Fails as a Marker in Prostate Cancer Detection and Identification of Aggressive Tumours. European Urology, 58(1), 12–18. https://doi.org/10.1016/j.eururo.2010.01.035

  20. Yang, Q., Li, N., Li, Q., Chen, S., Wang, H. L., & Yang, H. (2019). Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres. Analytica Chimica Acta, 1078, 161–167. https://doi.org/10.1016/j.aca.2019.06.031

    Article  Google Scholar 

  21. Chiou, C. C., Chang, P. Y., Chan, E. C., Wu, T. L., Tsao, K. C., & Wu, J. T. (2003). Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: Development of an ELISA and measurement in both bladder and prostate cancers. Clinica Chimica Acta, 334(1–2), 87–94. https://doi.org/10.1016/S0009-8981(03)00191-8

    Article  Google Scholar 

  22. Baum, C. E., Price, D. K., & Figg, W. D. (2010). Sarcosine as a potential prostate cancer biomarker and therapeutic target. Cancer Biology and Therapy, 9(5), 341–342. https://doi.org/10.4161/cbt.9.5.11310

    Article  Google Scholar 

  23. Liu, T., Fu, B., Chen, J., & Li, K. (2019). An electrochemical sarcosine sensor based on biomimetic recognition. Microchimica Acta, 186(3), 1–8. https://doi.org/10.1007/s00604-019-3240-0

    Article  Google Scholar 

  24. Rebelo, T. S. C. R., Pereira, C. M., Sales, M. G. F., Noronha, J. P., Costa-Rodrigues, J., Silva, F., & Fernandes, M. H. (2014). Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples. Analytica Chimica Acta, 850, 26–32. https://doi.org/10.1016/j.aca.2014.08.005

    Article  Google Scholar 

  25. Wang, J., Su, S., Wei, J., Bahgi, R., Hope-Weeks, L., Qiu, J., & Wang, S. (2015). Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Physica E: Low-Dimensional Systems and Nanostructures, 72, 17–24. https://doi.org/10.1016/j.physe.2015.04.006

    Article  Google Scholar 

  26. Hrapovic, S., Liu, Y., Male, K. B., & Luong, J. H. T. (2004). Platinum Nanoparticles and Carbon Nanotubes interactions with Pt nanoparticles to form a network that connected Pt nanoparticles to the electrode surface. TEM nanoparticles on carbon nanotubes whereas cyclic volta-. Analytical Chemistry, 76(4), 1083–1088

    Article  Google Scholar 

  27. Chauhan, R., Kumar, A., Umarji, G. G., Mulik, U. P., & Amalnerkar, D. P. (2015). Comparison of optical and photovoltaic properties of ZnO chemically synthesized by using different hydrolyzing agents. Journal of Solid State Electrochemistry, 19(1), 161–168. https://doi.org/10.1007/s10008-014-2568-y

    Article  Google Scholar 

  28. Marrani, A. G., Caprioli, F., Boccia, A., Zanoni, R., & Decker, F. (2014). Electrochemically deposited ZnO films: An XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing. Journal of Solid State Electrochemistry, 18(2), 505–513. https://doi.org/10.1007/s10008-013-2281-2

    Article  Google Scholar 

  29. Wang, X., Chen, X., Luo, D., Zhang, Y., Liu, Y., Sun, L., & Liu, Z. (2014). Electrodeposition of ZnO on carbon nanofiber buckypaper. Journal of Solid State Electrochemistry, 18(6), 1773–1777. https://doi.org/10.1007/s10008-014-2404-4

    Article  Google Scholar 

  30. Prasad, B. E., Kamath, P. V., & Ranganath, S. (2012). Electrodeposition of ZnO coatings from aqueous Zn(NO3) 2 baths: Effect of Zn concentration, deposition temperature, and time on orientation. Journal of Solid State Electrochemistry, 16(12), 3715–3722. https://doi.org/10.1007/s10008-012-1804-6

    Article  Google Scholar 

  31. Gomez, H., Riveros, G., Ramirez, D., Henriquez, R., Schrebler, R., Marotti, R., & Dalchiele, E. (2012). Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. Journal of Solid State Electrochemistry, 16(1), 197–204. https://doi.org/10.1007/s10008-011-1309-8

    Article  Google Scholar 

  32. Tellabati, N. V., Waghadkar, Y. B., Roy, A., Shinde, M. D., Gosavi, S. W., Amalnerkar, D. P., & Chauhan, R. (2015). Optical and photovoltaic properties of temperature-dependent synthesis of ZnO nanobelts, nanoplates, and nanorods. Journal of Solid State Electrochemistry, 19(8), 2413–2420. https://doi.org/10.1007/s10008-015-2890-z

    Article  Google Scholar 

  33. Makarova, M. V., MacOunová, K., & Krtil, P. (2006). The effect of cationic disorder on the optical and electrochemical behavior of nanocrystalline ZnO preparedfrom peroxide precursors. Journal of Solid State Electrochemistry, 10(5), 320–328. https://doi.org/10.1007/s10008-005-0094-7

    Article  Google Scholar 

  34. Kumar, D. D., Nair, B., Justinvictor, P., & Varkey, V. B. (2016). Structural and optical properties of zinc oxide nanorods prepared by aqueous solution route. Chemist, 89, 1–5.

    Google Scholar 

  35. Thirumoorthi, M., & Prakash, T. J., J. (2016). Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. Journal of Asian Ceramic Societies, 4(1), 124–132. https://doi.org/10.1016/j.jascer.2016.01.001

    Article  Google Scholar 

  36. Parthasarathy, S., Nandhini, V., & Jeyaprakash, B. G. (2016). Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection. Journal of Colloid and Interface Science, 482, 81–88. https://doi.org/10.1016/j.jcis.2016.07.066

    Article  Google Scholar 

  37. Idris, A. A. M., Arsat, R., Ahmad, M. K., & Sidek, F. (2017). Comparison of deposition methods of ZnO thin film on flexible substrate. Indonesian Journal of Electrical Engineering and Computer Science, 5(3), 536–541. https://doi.org/10.11591/ijeecs.v5.i3.pp536-541

    Article  Google Scholar 

  38. Akhtari, F., Zorriasatein, S., Farahmandjou, M., & Elahi, S. M. (2018). Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Materials Research Express. https://doi.org/10.1088/2053-1591/aac6f1.

    Article  Google Scholar 

  39. Swapna, R., & Santhosh Kumar, M. C. (2012). The role of substrate temperature on the properties of nanocrystalline Mo doped ZnO thin films by spray pyrolysis. Ceramics International, 38(5), 3875–3883. https://doi.org/10.1016/j.ceramint.2012.01.039

    Article  Google Scholar 

  40. He, J., Tan, B., Su, Y., Yang, S., & Wei, Q. (2012). XPS analysis of ZnO thin films obtained by pulsed laser deposition. Advanced Materials Research, 383–390, 6293–6296. https://doi.org/10.4028/www.scientific.net/AMR.383-390.6293

    Article  Google Scholar 

  41. Swapna, R., Ashok, M., Muralidharan, G., & Kumar, M. C. S. (2013). Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis. Journal of Analytical and Applied Pyrolysis, 102, 68–75. https://doi.org/10.1016/j.jaap.2013.04.001

    Article  Google Scholar 

  42. Cui, H. F., Ye, J. S., Zhang, W., De, Li, C. M., Luong, J. H. T., & Sheu, F. S. (2007). Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Analytica Chimica Acta, 594(2), 175–183. https://doi.org/10.1016/j.aca.2007.05.047

    Article  Google Scholar 

  43. Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., & Singh, S. P. (2012). Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta, 737, 1–21. https://doi.org/10.1016/j.aca.2012.05.048

    Article  Google Scholar 

  44. Narwal, V., Kumar, P., Joon, P., & Pundir, C. S. (2018). Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme and Microbial Technology, 113, 44–51. https://doi.org/10.1016/j.enzmictec.2018.02.010

    Article  Google Scholar 

  45. Samanta, S., Rahaman, S. Z., Roy, A., Jana, S., Chakrabarti, S., Panja, R., & Ray, S. K. (2017). Understanding of multi-level resistive switching mechanism in GeOx through redox reaction in H2O2/sarcosine prostate cancer biomarker detection. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-11657-4

    Article  Google Scholar 

  46. Yamkamon, V., Phakdee, B., Yainoy, S., Suksrichawalit, T., Tatanandana, T., Sangkum, P., & Eiamphungporn, W. (2018). Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI Journal, 17, 467–478. https://doi.org/10.17179/excli2018-1245.

    Article  Google Scholar 

  47. Talin Lui, B., Fu, J. C., & Kang Li. (2019). .An electrochemical sarcosine sensor based on biomimetic recognition. MicrochimicaActa, 186, 136. https://doi.org/10.1007/s00604-019-3240-0.

    Article  Google Scholar 

  48. Wang, Q., Yang, C., Yang, Q., Yu&, S., & H Yang. (2019). Platinum-loaded mesoporous nickel phosphonate and its electrochemical application for sarcosine detection. Analytica Chimica acta. https://doi.org/10.1016/j.aca.2018.09.027.Elsevier

    Article  Google Scholar 

  49. Thenmozhi Rajarathinam, M., Kwon, D., Thirumalai, S., Kim, S., Lee, J. H., Yoon, H. J., & Chang, S. C. (2021). Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Analytica Chimica Acta, 1175, 338749. https://doi.org/10.1016/j.aca.2021.338749.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge TRR fund, SASTRA Deemed University, for financial and infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Balamurugan.

Ethics declarations

Conflict of interest

The authors declare no conflict of Interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, S., Varshini, K.S., Sonia, T. et al. Spray Deposited ZnO Nanograins for Enzyme-Free Detection of Sarcosine. Sens Imaging 22, 46 (2021). https://doi.org/10.1007/s11220-021-00369-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-021-00369-9

Keywords

Navigation