Skip to main content
Log in

Development and Testing of the MarSCoDe LIBS Calibration Target in China’s Tianwen-1 Mars Mission

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Mars Surface Composition Detector (MarSCoDe) is a remote sensing instrument mounted on the front deck of the Zhurong rover in China’s Tianwen-1 mission. The MarSCoDe adopts Laser-Induced Breakdown Spectroscopy (LIBS), along with Short Wave Infrared Spectroscopy (SWIR) and a telescopic micro-imager, to perform in situ detection of the chemical composition of soils, rocks, and minerals on the Martian surface. Since the MarSCoDe LIBS system works in extraterrestrial environments, it is important to equip the system with a set of onboard calibration targets, which are used for assessing the real-time performance of the instrument under various environmental conditions and conducting instrumental response calibration. Twelve dedicated LIBS reference samples were embedded as the MarSCoDe calibration target (MCCT) set, which plays a critical role in LIBS calibration before conducting LIBS analysis. This paper elaborates on the selection, development, characterization and testing of the MCCT set. The underlying scientific reasons and technical requirements that determine the selection of MCCT samples are introduced. The development procedures and mechanical performance test of both the calibration samples and the assembly holder are presented. Then, a comparison of the MCCTs and the characterization and scientific testing are described. The LIBS spectra of the MCCTs collected in three different atmospheric scenarios, namely laboratory-simulated Martian, normal terrestrial, and in situ Martian atmosphere, were investigated. The laboratory results and in situ behaviour show that the MarSCoDe instrument and the MCCT set can soundly adapt to the Martian environment with sufficient performance, as indicated by the fact that the spectral lines of the main elements in the calibration targets can be well identified and distinguished, including Ti, Si, Al, Fe, Mg, P, Ca, Na, K, O, C, H, S, etc. The MCCT samples provide a good reference for analysing Martian surface material composition and formulating the transfer relationship between the LIBS spectra measured in different atmospheric environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAS:

Chinese Academy of Sciences

2D:

Two Dimensional

LIBS:

Laser Induced Breakdown Spectroscopy

SWIR:

Short Wave Infrared Spectroscopy

TMI:

Telescopic Micro-Imager

CCD:

Charge Coupled Devices

CMOS:

Complementary Metal Oxide Semiconductor

MarSCoDe:

Mars Surface Composition Detector

MCCT:

MarSCoDe Calibration Target

CCCT:

ChemCam Calibration Target

SCCT:

SuperCam Calibration Target

CIP:

Cold Isostatic Pressing

SEM:

Scanning Electron Microscopy

EDS:

Energy Dispersive Spectrometer

XRF:

X-Ray Fluorescence

NIST:

National Institute of Standards and Technology

References

  • Anderson DE, Ehlmann BL, Forni O et al. (2017) Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data. J Geophys Res, Planets 122(4):744–770

    Article  ADS  Google Scholar 

  • Arvidson RE, Gooding JL, Moore HJ (1989) The Martian surface as imaged, sampled, and analyzed by the Viking landers. Rev Geophys 27(1):39–60

    Article  ADS  Google Scholar 

  • Azua-Bustos A, Fairén AG, Silva CG et al. (2020) Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci Rep 10(1):19183

    Article  ADS  Google Scholar 

  • Baek SJ, Park A, Ahn YJ, Choo J (2015) Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 140:250–257

    Article  ADS  Google Scholar 

  • Bandfield JL (2002) Global mineral distributions on Mars. J Geophys Res 107(E6):9-19–9-20

    Google Scholar 

  • Bandfield JL, Hamilton VE, Christensen PR (2000) A global view of Martian surface compositions from MGS-TES. Science 287(5458):1626–1630

    Article  ADS  Google Scholar 

  • Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical X-ray fluorescence analysis. Springer, Berlin

    Book  Google Scholar 

  • Bell J (2008) The Martian surface: composition, mineralogy and physical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bibring JP, Erard S (2001) The Martian surface composition. Space Sci Rev 96(1):293–316

    Article  ADS  Google Scholar 

  • Biesuz M, Sglavo V (2019) Microstructural temperature gradient-driven diffusion: possible densification mechanism for flash sintering of zirconia? Ceram Int 45(1):1227–1236

    Article  Google Scholar 

  • Bischoff JL (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner 20:217–223

    Article  ADS  Google Scholar 

  • Bishop JL, Pieters CM (1996) Spectral analysis of the Martian meteorite ALH 84001. Meteorit Planet Sci 31:15

    Google Scholar 

  • Bishop JL, Fairén AG, Michalski JR et al. (2018) Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat Astron 2:206–213

    Article  ADS  Google Scholar 

  • Cao G, Estournes C, Garay J, Orru R (2019) Spark plasma sintering: current status, new developments and challenges. Elsevier Science

    Google Scholar 

  • Carter J, Poulet F (2013) Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat Geosci 6:1008–1012

    Article  ADS  Google Scholar 

  • Chaléard C, Mauchien P, Andre N, Uebbing J, Lacour JL, Geertsen C (1997) Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry. J Anal At Spectrom 12(2):183–188

    Article  Google Scholar 

  • Clark BC, Arvidson RE, Gellert R et al. (2007) Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars. J Geophys Res, Planets 112:E06S01

    Article  Google Scholar 

  • Clegg SM, Wiens RC, Anderson R et al. (2017) Recalibration of the Mars science laboratory ChemCam instrument with an expanded geochemical database. Spectrochim Acta, Part B, At Spectrosc 129:64–85

    Article  ADS  Google Scholar 

  • Cousin A, Meslin PY, Wiens RC et al. (2015) Compositions of coarse and fine particles in Martian soils at Gale: a window into the production of soils. Icarus 249:22–42

    Article  ADS  Google Scholar 

  • Cousin A, Sautter V, Fabre C et al. (2022) SuperCam calibration targets on board the perseverance rover: fabrication and quantitative characterization. Spectrochim Acta, Part B, At Spectrosc 188:106341

    Article  Google Scholar 

  • Cox MA, Cavosie AJ, Orr KJ et al. (2022) Impact and habitability scenarios for early Mars revisited based on a 4.45-Ga shocked zircon in regolith breccia. Sci Adv 8:eabl7497

    Article  ADS  Google Scholar 

  • Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New York

    Book  Google Scholar 

  • Cremers DA, Radziemski LJ (2013) Introduction. In: Handbook of laser-induced breakdown spectroscopy, 2nd edn. Wiley, New York

    Chapter  Google Scholar 

  • David G, Dehouck E, Meslin P-Y et al. (2022) Evidence for amorphous sulfates as the main carrier of soil hydration in Gale crater. Mars Geophys Res Lett 49(21):e2022GL098755

    Article  ADS  Google Scholar 

  • Eggleton RA (1975) Nontronite topotaxial after hedenbergite. Am Mineral 60(11–12):1063–1068

    Google Scholar 

  • Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Annu Rev Earth Planet Sci 42:291–315

    Article  ADS  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL et al. (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60

    Article  ADS  Google Scholar 

  • Fabre C, Maurice S, Cousin A, Wiens RC, Forni O, Sautter V, Guillaume D (2011) Onboard calibration igneous targets for the Mars science laboratory Curiosity rover and the chemistry camera laser induced breakdown spectroscopy instrument. Spectrochim Acta, Part B, At Spectrosc 66(3):280–289

    Article  ADS  Google Scholar 

  • Fabre C, Cousin A, Wiens R et al. (2014) In-situ calibration using univariate analyses based on the onboard chemcam targets: first prediction of Martian rock and soil compositions. Spectrochim Acta, Part B, At Spectrosc 99:34–51

    Article  ADS  Google Scholar 

  • Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring J-P (2007) On the origin of gypsum in the Mars north polar region. J Geophys Res 112:E07002

    ADS  Google Scholar 

  • Flahaut J, Quantin C, Allemand P et al. (2010) Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data. J Geophys Res, Planets 115:E11007

    Article  ADS  Google Scholar 

  • Flahaut J, Barthez M, Payet V et al (2020) Identification and characterization of new feldspar-bearing rocks in the walls of Valles Marineris, Mars, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13377

  • Forni O, Gaft M, Toplis MJ et al. (2015) First detection of fluorine on Mars: implications for Gale crater’s geochemistry. J Geophys Res, Planets 42(4):1020–1028

    Google Scholar 

  • Gendrin A, Mangold N, Bibring J-P et al. (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307(5715):1587–1591

    Article  ADS  Google Scholar 

  • Grotzinger J (2009) Beyond water on Mars. Nat Geosci 2:231–233

    Article  ADS  Google Scholar 

  • Hamilton VE, Christensen PR (2005) Evidence for extensive, olivine-rich bedrock on Mars. Geology 33(6):433–436

    Article  ADS  Google Scholar 

  • Hamilton VE, Christensen PR, Bandfield JL (2003) Volcanism or aqueous alteration on Mars? Nature 421:711–712

    Article  ADS  Google Scholar 

  • Hoefen TM, Clark RN, Bandfield JL, Smith MD, Pearl JC, Christensen PR (2003) Discovery of olivine in the Nili Fossae region of Mars. Science 302:627–630

    Article  ADS  Google Scholar 

  • Jia YZ, Fan Y, Zou Y (2018) Scientific objectives and payloads of Chinese first Mars exploration. Chin J Space Sci 38(5):650–655

    Article  Google Scholar 

  • Jia L, Liu X, Xu W et al. (2022) Initial drift correction and spectral calibration of MarSCoDe laser-induced breakdown spectroscopy on the Zhurong rover. Remote Sens 14(23):5964

    Article  ADS  Google Scholar 

  • Jin G, Wu Z, Ling Z et al. (2022) A new spectral transformation approach and quantitative analysis for MarSCoDe laser-induced breakdown spectroscopy (LIBS) data. Remote Sens 14(16):3960

    Article  ADS  Google Scholar 

  • Köhler B, Singer A, Stoffers P (1994) Biogenic nontronite from marine white smoker chimneys. Clays Clay Miner 42:689–701

    Article  ADS  Google Scholar 

  • Langevin Y, Poulet F, Bibring J-P et al. (2005b) Summer evolution of the North polar cap of Mars as observed by OMEGA/Mars express. Science 307:1581–1584

    Article  ADS  Google Scholar 

  • Langevin Y, Poulet F, Bibring J-P, Gondet B (2005a) Sulfates in the North polar region of Mars detected by OMEGA/Mars express. Science 307:1584–1586

    Article  ADS  Google Scholar 

  • Lin Y, Lu F, Hao J, Liu Y, Hu S, Zhang J, Yang W (2014) Sintering nano-crystalline calcite: a new method of synthesizing homogeneous reference materials for SIMS analysis. J Anal At Spectrom 29(9):1686–1691

    Article  Google Scholar 

  • Liu XF, Xu WM, Li LN et al. (2022) Comparison on quantitative analysis of olivine using MarSCoDe laser-induced breakdown spectroscopy in a simulated Martian atmosphere. Remote Sens 14:5612

    Article  ADS  Google Scholar 

  • Madariaga JM, Aramendia J, Arana G et al. (2022) Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance. Anal Chim Acta 1209:339837

    Article  Google Scholar 

  • Manrique JA, Lopez-Reyes G, Cousin A et al. (2020) SuperCam calibration targets: design and development. Space Sci Rev 216:138

    Article  ADS  Google Scholar 

  • Martin M, Martin RC, Allman S, Brice D, Wymore A, Andre N (2015) Quantification of rare Earth elements using laser-induced breakdown spectroscopy. Spectrochim Acta, Part B, At Spectrosc 114:65–73

    Article  ADS  Google Scholar 

  • Massé M, Bourgeois O, Mouélic SL et al. (2012) Wide distribution and glacial origin of polar gypsum on Mars. Earth Planet Sci Lett 317–318:44–55

    Article  ADS  Google Scholar 

  • Maurice S, Wiens RC, Saccoccio M et al. (2012) The ChemCam instrument suite on the Mars science laboratory (MSL) rover: science objectives and mast unit description. Space Sci Rev 170:95–166

    Article  ADS  Google Scholar 

  • Maurice S, Wiens RC, Bernardi P et al. (2021) The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci Rev 217:47

    Article  ADS  Google Scholar 

  • McCubbin FM, Elardo SM, Shearer CK Jr, Smirnov A, Hauri EH, Draper DS (2013) A petrogenetic model for the comagmatic origin of chassignites and nakhlites: inferences from chlorine-rich minerals, petrology, and geochemistry. Meteorit Planet Sci 48:819–853

    Article  ADS  Google Scholar 

  • McCubbin FM, Boyce JW, Novák-Szabó T et al. (2016) Geologic history of Martian regolith breccia northwest Africa 7034: evidence for hydrothermal activity and lithologic diversity in the Martian crust. J Geophys Res, Planets 121:2120–2149

    Article  ADS  Google Scholar 

  • McLennan SM, Anderson RB, Bell JF et al. (2013) Elemental geochemistry of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343(6169):1244734

    Article  Google Scholar 

  • McSween HY Jr (2002) The rocks of Mars, from far and near. Meteorit Planet Sci 37(1):7–25

    Article  ADS  Google Scholar 

  • McSween HY Jr, Taylor GJ, Wyatt MB (2009) Elemental composition of the Martian crust. Science 324:736–739

    Article  ADS  Google Scholar 

  • Montagnac G, Dromart G, Beck P, Mercier F, Reynard B, Cousin A, Maurice S, Wiens R (2018) Spark plasma sintering preparation of reference targets for field spectroscopy on Mars. J Raman Spectrosc 49(9):1419–1425

    Article  ADS  Google Scholar 

  • Morrison SM, Downs RT, Blake DF et al. (2018) Crystal chemistry of Martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater. Mars Am Mineral 103(6):857–871

    Article  ADS  Google Scholar 

  • Nachon M, Clegg SM, Mangold N et al. (2014) Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. J Geophys Res, Planets 119:1991–2016

    Article  ADS  Google Scholar 

  • Nasrazadani S, Hassani S (2016) Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries. In: Handbook of materials failure analysis with case studies from the oil and gas industry, pp 39–54

    Chapter  Google Scholar 

  • Ody A, Poulet F, Bibring J-P et al. (2013) Global investigation of olivine on Mars: insights into crust and mantle compositions. J Geophys Res, Planets 118(2):234–262

    Article  ADS  Google Scholar 

  • Oyedotun TD (2018) X-ray fluorescence (XRF) in the investigation of the composition of Earth materials: a review and an overview. Geology Ecology Landscapes 2(2):148–154

    Article  Google Scholar 

  • Payré V, Fabre C, Cousin A et al. (2017) Alkali trace elements in Gale crater, Mars, with ChemCam: calibration update and geological implications. J Geophys Res, Planets 122(3):650–679

    Article  ADS  Google Scholar 

  • Payré V, Nachon M, Wiens RC et al (2021) Transition metals in Gale Crater, Mars: perspectives on global abundances and future exploration. ESS Open Archive

  • Rammelkamp K, Gasnault O, Forni O et al. (2021) Clustering supported classification of ChemCam data from Gale crater. Mars Earth Space Sci 8(12):e2021EA001903

    ADS  Google Scholar 

  • Rampe EB, Bristow TF, Morris RV et al. (2020) Mineralogy of Vera Rubin Ridge from the Mars science laboratory CheMin instrument. J Geophys Res, Planets 125:e2019JE006306

    Article  ADS  Google Scholar 

  • Rapin W, Meshlin PY, Maurice S et al. (2016) Hydration state of calcium sulfates in Gale crater, Mars: identification of bassanite veins. Earth Planet Sci Lett 452:197–205

    Article  ADS  Google Scholar 

  • Rogers AD, Nekvasil H (2015) Feldspathic rocks on Mars: compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys Res Lett 42:2619–2626

    Article  ADS  Google Scholar 

  • Ruff SW, Christensen PR (2007) Basaltic andesite, altered basalt, and a TES-based search for smectite clay minerals on Mars. Geophys Res Lett 34:L10204

    Article  ADS  Google Scholar 

  • Salvatore MR, Mustard JF, Wyatt MB, Murchie SL (2010) Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. J Geophys Res 115:E07005

    ADS  Google Scholar 

  • Santos AR, Agee CB, McCubbin FM et al. (2013) Apatite and merrillite from Martian meteorite NWA 7034. In: Lunar and planetary science conference p 2601

    Google Scholar 

  • Sautter V, Fabre C, Forni O et al. (2014) Igneous mineralogy at Bradbury Rise: the first ChemCam campaign at Gale crater. J Geophys Res, Planets 119(1):30–46

    Article  ADS  Google Scholar 

  • Stuurman CM, Osinski GR, Holt JW, Levy JS, Brothers TC, Kerrigan M, Campbell BA (2016) SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia. Mars Geophys Res Lett 43:9484–9491

    Article  ADS  Google Scholar 

  • Tanaka KL, Robbins SJ, Fortezzo CM, Skinner JA Jr, Hare TM (2014) The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet Space Sci 95:11–24

    Article  ADS  Google Scholar 

  • Tatsumi Y, Sato T, Kodaira S (2015) Evolution of the Earth as an andesite planet: water, plate tectonics, and delamination of anti-continent. Earth Planets Space 67:91

    Article  ADS  Google Scholar 

  • Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge Planetary Science

    Google Scholar 

  • Taylor GJ, Martel LMV, Karunatillake S, Gasnault O, Boynton WV (2010) Mapping Mars geochemically. Geology 38:183–186

    Article  ADS  Google Scholar 

  • Tertian R, Claisse F (1982) Principles of quantitative X-ray fluorescence analysis

    Google Scholar 

  • Vaniman D, Dyar MD, Wiens R et al. (2012) Ceramic ChemCam calibration targets on Mars science laboratory. Space Sci Rev 170:229–255

    Article  ADS  Google Scholar 

  • Vaniman DT, Martínez GM, Rampe EB et al. (2018) Gypsum, bassanite, and anhydrite at Gale crater. Mars Am Mineral 103:1011–1020

    Article  ADS  Google Scholar 

  • Wan WX, Wang C, Li CL, Wei Y (2020) China’s first mission to Mars. Nat Astron 4:721

    Article  ADS  Google Scholar 

  • Wiens RC, Arvidson RE, Cremers DA et al. (2002) Combined remote mineralogical and elemental identification from rovers: field and laboratory tests using reflectance and laser-induced breakdown spectroscopy. J Geophys Res, Planets 107(E11):8004

    Article  ADS  Google Scholar 

  • Wiens RC, Maurice S, Barraclough B et al. (2012) The ChemCam instrument suite on the Mars science laboratory (MSL) rover: body unit and combined system tests. Space Sci Rev 170:167–227

    Article  ADS  Google Scholar 

  • Wiens RC, Maurice S, Lasue J et al. (2013) Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars science laboratory rover. Spectrochim Acta, Part B, At Spectrosc 82:1–27

    Article  ADS  Google Scholar 

  • Wiens RC, Maurice S, Robinson SH et al. (2021) The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci Rev 217:4

    Article  ADS  Google Scholar 

  • Wray JJ, Hansen ST, Dufek J et al. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat Geosci 6(12):1013–1017

    Article  ADS  Google Scholar 

  • Wyatt M, McSween H (2002) Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417:263–266

    Article  ADS  Google Scholar 

  • Xu WM, Liu XF, Yan ZX et al. (2021) The MarSCoDe instrument suite on the Mars rover of China’s Tianwen-1 mission. Space Sci Rev 217:64

    Article  ADS  Google Scholar 

  • Young BW, Chan MA (2017) Gypsum veins in Triassic Moenkopi mudrocks of southern Utah: analogs to calcium sulfate veins on Mars. J Geophys Res, Planets 122(1):150–171

    Article  ADS  Google Scholar 

  • Zhang Y, Ren X, Chen Z et al. (2023) Wavelength calibration for the LIBS spectra of the Zhurong Mars rover. Remote Sens 15(6):1494

    Article  ADS  Google Scholar 

  • Zhou YL, Zhu Y, Bai Y et al. (2021) Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Adv Space Res 67:812–823

    Article  ADS  Google Scholar 

  • Zuber MT (2001) The crust and mantle of Mars. Nature 412(6843):220–227

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The MarSCoDe team appreciates all those who have provided support to the MarSCoDe development project at various institutes or academies.

Funding

This work was supported by China’s first Mars exploration program led by Lunar Exploration and Space Engineering Center of China National Space Administration (CNSA). We thank the funding from Natural Science Foundation of Shanghai (No. 22ZR1472400 and No. 23ZR1473200), the grant from Key Laboratory of Space Active Opto-electronics Technology, CAS (No. CXJJ-22S019), Key Laboratory of Lunar and Deep Space Exploration, CAS (No. LDSE201904), the supports from the Pre-research project on Civil Aerospace Technologies (No. D020102), the China National Space Administration (CNSA) and the National Natural Science Foundation (No. U1931211), Shanghai Rising-Star Program (No. 23QA1411000) and National Key R&D Program of China (No. 2022YFF0504100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiming Xu, Chunlai Li or Rong Shu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Note by the Editor: This is a Special Communication linked to the Topical Collection on the Huoxing-1 (HX-1) / Tianwen-1 (TW-1) mission to Mars published in Space Science Reviews. In addition to invited review papers and topical collections, Space Science Reviews publishes unsolicited Special Communications. These are papers linked to an earlier topical volume/collection, report-type papers, or timely papers dealing with a strong space-science-technology combination (such papers summarize the science and technology of an instrument or mission in one paper).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, W., Qi, H. et al. Development and Testing of the MarSCoDe LIBS Calibration Target in China’s Tianwen-1 Mars Mission. Space Sci Rev 219, 43 (2023). https://doi.org/10.1007/s11214-023-00987-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-023-00987-7

Keywords

Navigation