Skip to main content
Log in

The Juno Gravity Science Instrument

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • J.D. Anderson, G.W. Null, S.K. Wong, Gravity results from Pioneer 10 Doppler data. J. Geophys. Res. 79, 3661 (1974)

    Article  ADS  Google Scholar 

  • S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2005)

    Article  ADS  Google Scholar 

  • J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen, W.L. Smith, R.L. Sydnor, R.F. Vessot, G.M. Winkler, Characterization of frequency stability. IEEE Trans. Instrum. Meas. 1001, 105 (1971)

    Article  Google Scholar 

  • S.J. Bolton et al., The Juno mission. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-017-0429-6

    Google Scholar 

  • J.K. Campbell, S.P. Synnott, Gravity field of the Jovian system from Pioneer and Voyager tracking data. Astron. J. 90, 364 (1985)

    Article  ADS  Google Scholar 

  • S. Ciarcia, L. Simone, D. Gelfusa, P. Colucci, G. De Angelis, F. Argentieri, L. Iess, R. Formaro, MORE and Juno Ka-band transponder design, performance, qualification and in-flight validation, in 6th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications ESA-ESOC, 10–13 September 2013

    Google Scholar 

  • V.R. Eshleman, G.L. Tyler, G.E. Wood, G.F. Lindal, J.D. Anderson, G.S. Levy, T.A. Croft, Radio science with Voyager at Jupiter: initial Voyager 2 results and a Voyager 1 measure of the Io torus. Science 206, 959 (1979)

    Article  ADS  Google Scholar 

  • M.A. Gudim, W. Gawronski, W.J. Hurd, P.R. Brown, D.M. Strain, Design and performance of the monopulse pointing system of the DSN 34-meter beam-waveguide antennas, in Telecommunications and Mission Operations Progress Report, vol. 42-138 (1999).

    Google Scholar 

  • W.B. Hubbard, B.A. Militzer, Preliminary Jupiter model. Astrophys. J. 820(1), 80 (2016)

    Article  ADS  Google Scholar 

  • R.A. Jacobson, Jupiter satellite ephemeris file Jup230, in NASA Navigation and Ancillary Information Facility (2003). https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/jup230l.cmt

    Google Scholar 

  • R.A. Jacobson, Jupiter satellite ephemeris file Jup310, in NASA Navigation and Ancillary Information Facility (2009). https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/jup310.cmt

    Google Scholar 

  • R.A. Jacobson, R. Haw, T. McElrath, P. Antreasian, A comprehensive orbit reconstruction for the Galileo prime mission in the J2000 system, in Advances in the Astronautical Sciences, vol. 103 (1999)

    Google Scholar 

  • M.A. Janssen, J.E. Oswald, S.T. Brown, S. Gulkis, S.M. Levin, S.J. Bolton, M.D. Allison, S.K. Atreya, D. Gautier, A.P. Ingersoll, J.I. Lunine, G.S. Orton, T.C. Owen, P.G. Steffes, V. Adumitroaie, A. Bellotti, L.A. Jewell, C. Li, L. Li, S. Misra, F.A. Oyafuso, D. Santos-Costaz, E. Sarkissian, R. Williamson, J.K. Arballo, A. Kitiyakaral, A. Ulloa-Severino, J.C. Chen, F.W. Maiwald, A.S. Sahakian, P.J. Pingree, K.A. Lee, A.S. Mazer, R. Redick, R.E. Hodges, R.C. Hughes, G. Bedrosian, D.E. Dawson, W.A. Hatch, D.S. Russell, N.F. Chamberlain, M.S. Zawadskil, B. Khayatianl, B.R. Franklin, H.A. Conley, J.G. Kempenaar, M.S. Lool, E.T. Sunada, V. Vorperion, C.C. Wang, MWR: microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0349-5

    Google Scholar 

  • Y. Kaspi, Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676 (2013)

    Article  ADS  Google Scholar 

  • S.J. Keihm, A. Tanner, H. Rosenberger, Measurements and calibration of tropospheric delay at Goldstone from the Cassini media calibration system, in Interplanetary Network Progress Report, vol. 42-158 (2004)

    Google Scholar 

  • A.J. Kliore, J.D. Anderson, J.W. Armstrong, S.W. Asmar, C.L. Hamilton, N.J. Rappaport, H.D. Wahlquist, R. Ambrosini, F.M. Flasar, R.G. French, L. Iess, Cassini radio science. Space Sci. Rev. 115, 1 (2004)

    Article  ADS  Google Scholar 

  • J. Lauf, M. Calhoun, W. Diener, J. Gonzales, A. Kirk, P. Kuhnle, B. Tucker, C. Kirby, R. Tjoelker, Clocks and timing in the NASA deep space network, in Frequency Control Symposium and Exposition, Proceedings of the 2005 IEEE International (2005)

    Google Scholar 

  • R.P. Linfield, J.Z. Wilcox, Radio metric errors due to mismatch and offset between a DSN antenna beam and the beam of a troposphere calibration instrument, in Interplanetary Network Progress Report, vol. 42-114 (2001)

    Google Scholar 

  • G. Mariotti, P. Tortora, Experimental validation of a dual uplink multifrequency dispersive noise calibration scheme for Deep Space tracking. Radio Sci. 48, 111 (2013)

    Article  ADS  Google Scholar 

  • Y. Miguel, T. Guillot, L. Fayon, Jupiter internal structure: the effect of different equations of state. Astron. Astrophys. 596, A114 (2016)

    Article  ADS  Google Scholar 

  • T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. DESCANSO Monograph, vol. 2 (2000)

    Google Scholar 

  • R. Mukai, D. Hansen, A. Mittskus, J. Taylor, M. Danos, Juno Telecommunications. NASA DESCANSO Design and Performance Summary Series (2012)

    Google Scholar 

  • N. Nettelmann, A. Becker, B. Holst, R. Redmer, Jupiter models with improved hydrogen EOS (H-REOS.2). Astrophys. J. 750, A52 (2012)

    Article  ADS  Google Scholar 

  • A.E. Niell, A.J. Coster, F.S. Solheim, V.B. Mendes, P.C. Toor, R.B. Langley, C.A. Upham, Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Ocean. Technol. 18, 830 (2001)

    Article  ADS  Google Scholar 

  • G.W. Null, J.D. Anderson, S.K. Wong, Gravity field of Jupiter from Pioneer 11 tracking data. Science 188, 476 (1975)

    Article  ADS  Google Scholar 

  • P.F. Thompson, M. Abrahamson, S. Ardalan, J. Bordi, Reconstruction of Earth flyby by the Juno spacecraft, in AAS-435 (2014)

    Google Scholar 

  • J.D. Vacchione, R.C. Kruid, A. Prata, L.R. Amaro, A.P. Mittskus, Telecommunications antennas for the Juno Mission to Jupiter, in IEEE Aerospace Conference (2012)

    Google Scholar 

  • S.M. Wahl, W.B. Hubbard, B. Militzer, Tidal response of preliminary Jupiter model. Astrophys. J. 831, 14 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the following colleagues for their notable contributions to the design, development, and testing of the various elements that constitute the Juno Gravity Science instrumentation. We especially appreciate the work at NASA’s Jet Propulsion Laboratory of Michael Agnew, Kris Angkasa, Scott Bryant, Fouad Chiha, Manuel Franco, Gary Glass, David Hansen, Steve Keihm, Juan Ocampo, Aluizio Prata, Joseph Vacchione, and Phil Yates. We thank the Italian Space Agency and Thales Alenia Space-Italy, especially Dario Andreozzi and the entire Ka-band Translator team. We appreciate the extraordinary support of the management and staff of the Deep Space Network. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology under contract the National Aeronautics and Space Administration (NASA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Folkner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asmar, S.W., Bolton, S.J., Buccino, D.R. et al. The Juno Gravity Science Instrument. Space Sci Rev 213, 205–218 (2017). https://doi.org/10.1007/s11214-017-0428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0428-7

Keywords

Navigation