Skip to main content
Log in

Super-Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using SDO/HMI Data and an Attention-Aided Convolutional Neural Network

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Image super-resolution is an important subject in image processing and recognition. Here, we present an attention-aided convolutional neural network for solar image super-resolution. Our method, named SolarCNN, aims to enhance the quality of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). The ground-truth labels used for training SolarCNN are the LOS magnetograms collected by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Solar ARs consist of strong magnetic fields in which magnetic energy can suddenly be released to produce extreme space-weather events, such as solar flares, coronal mass ejections, and solar energetic particles. SOHO/MDI covers Solar Cycle 23, which is stronger with more eruptive events than Cycle 24. Enhanced SOHO/MDI magnetograms allow for better understanding and forecasting of violent events of space weather. Experimental results show that SolarCNN improves the quality of SOHO/MDI magnetograms in terms of the structural similarity index measure, Pearson’s correlation coefficient, and the peak signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abduallah, Y., Jordanova, V.K., Liu, H., Li, Q., Wang, J.T.L., Wang, H.: 2022, Predicting solar energetic particles using SDO/HMI vector magnetic data products and a bidirectional LSTM network. Astrophys. J. Suppl. 260(1), 16. DOI.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Xu, Y., Jing, J.: 2014, Global energetics of solar flares. I. Magnetic energies. Astrophys. J. 797(1), 50. DOI.

    Article  ADS  Google Scholar 

  • Chen, C., Qi, F.: 2018, Single image super-resolution using deep CNN with dense skip connections and Inception-ResNet. In: 2018 International Conference on Information Technology in Medicine and Education, 999. DOI.

    Chapter  Google Scholar 

  • Deng, J., Song, W., Liu, D., Li, Q., Lin, G., Wang, H.: 2021, Improving the spatial resolution of solar images using generative adversarial network and self-attention mechanism. Astrophys. J. 923(1), 76. DOI.

    Article  ADS  Google Scholar 

  • Deng, L., Hinton, G., Kingsbury, B.: 2013, New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 8599. DOI.

    Chapter  Google Scholar 

  • Díaz Baso, C.J., Asensio Ramos, A.: 2018, Enhancing SDO/HMI images using deep learning. Astron. Astrophys. 614, A5. DOI.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162(1–2), 1. DOI.

    Article  ADS  Google Scholar 

  • Espuña Fontcuberta, A., Ghosh, A., Chatterjee, S., Mitra, D., Nandy, D.: 2023, Forecasting Solar Cycle 25 with physical model-validated recurrent neural networks. Solar Phys. 298(1), 8. DOI.

    Article  ADS  Google Scholar 

  • Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T.L., Prinz, M., Palme, K., Simons, M., Diester, I., Brox, T., Ronneberger, O.: 2019, U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67. DOI.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: 2016, Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 770. DOI.

    Chapter  Google Scholar 

  • Hu, Z., Turki, T., Phan, N., Wang, J.T.L.: 2018, A 3D atrous convolutional long short-term memory network for background subtraction. IEEE Access 6, 43450. DOI.

    Article  Google Scholar 

  • Huang, D., Chen, J.: 2022, MESR: multistage enhancement network for image super-resolution. IEEE Access 10, 54599. DOI.

    Article  Google Scholar 

  • Hudson, H.S.: 2011, Global properties of solar flares. Space Sci. Rev. 158(1), 5. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Wang, J., Liu, C., Jing, J., Liu, H., Wang, J.T.L., Wang, H.: 2020, Identifying and tracking solar magnetic flux elements with deep learning. Astrophys. J. Suppl. 250(1), 5. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Jing, J., Wang, J., Liu, C., Li, Q., Xu, Y., Wang, J.T.L., Wang, H.: 2021, Tracing H\(\alpha \) fibrils through Bayesian deep learning. Astrophys. J. Suppl. 256(1), 20. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Li, Q., Xu, Y., Hsu, W., Ahn, K., Cao, W., Wang, J.T.L., Wang, H.: 2022, Inferring line-of-sight velocities and Doppler widths from Stokes profiles of GST/NIRIS using stacked deep neural networks. Astrophys. J. 939(2), 66. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Li, Q., Liu, N., Hu, Z., Abduallah, Y., Jing, J., Xu, Y., Wang, J.T.L., Wang, H.: 2023, Generating photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and BBSO data with deep learning. Solar Phys. 298, 87. DOI.

    Article  ADS  Google Scholar 

  • Jonas, E., Bobra, M., Shankar, V., Todd Hoeksema, J., Recht, B.: 2018, Flare prediction using photospheric and coronal image data. Solar Phys. 293(3), 48. DOI.

    Article  ADS  Google Scholar 

  • Kastrati, Z., Dalipi, F., Imran, A.S., Pireva Nuci, K., Wani, M.A.: 2021, Sentiment analysis of students’ feedback with NLP and deep learning: a systematic mapping study. Appl. Sci. 11(9), 3986. DOI.

    Article  Google Scholar 

  • Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li, Q., Chen, Y.: 2022, Srdiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47. DOI.

    Article  Google Scholar 

  • Liu, H., Liu, C., Wang, J.T.L., Wang, H.: 2019, Predicting solar flares using a long short-term memory network. Astrophys. J. 877(2), 121. DOI.

    Article  ADS  Google Scholar 

  • Liu, H., Xu, Y., Wang, J., Jing, J., Liu, C., Wang, J.T.L., Wang, H.: 2020a, Inferring vector magnetic fields from Stokes profiles of GST/NIRIS using a convolutional neural network. Astrophys. J. 894(1), 70. DOI.

    Article  ADS  Google Scholar 

  • Liu, H., Liu, C., Wang, J.T.L., Wang, H.: 2020b, Predicting coronal mass ejections using SDO/HMI vector magnetic data products and recurrent neural networks. Astrophys. J. 890(1), 12. DOI.

    Article  ADS  Google Scholar 

  • Liu, S., Xu, L., Zhao, Z., Erdélyi, R., Korsós, M.B., Huang, X.: 2022, Deep learning based solar flare forecasting model. II. Influence of image resolution. Astrophys. J. 941(1), 20. DOI.

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager. Solar Phys. 279(1), 295. DOI.

    Article  ADS  Google Scholar 

  • Mayfield, E.B., Lawrence, J.K.: 1985, The correlation of solar flare production with magnetic energy in active regions. Solar Phys. 96(2), 293. DOI.

    Article  ADS  Google Scholar 

  • Mercea, V., Paraschiv, A.R., Lacatus, D.A., Marginean, A., Besliu-Ionescu, D.: 2023, A machine learning enhanced approach for automated sunquake detection in acoustic emission maps. Solar Phys. 298(1), 4. DOI.

    Article  ADS  Google Scholar 

  • Misra, D.: 2020, Mish: a self regularized non-monotonic activation function. In: 31st British Machine Vision Conference. https://www.bmvc2020-conference.com/assets/papers/0928.pdf.

    Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI.

    Article  ADS  Google Scholar 

  • Priest, E.R., Longcope, D.W., Janvier, M.: 2016, Evolution of magnetic helicity during eruptive flares and coronal mass ejections. Solar Phys. 291(7), 2017. DOI.

    Article  ADS  Google Scholar 

  • Qin, Z., Zhang, P., Wu, F., Li, X.: 2021, FcaNet: frequency channel attention networks. In: 2021 IEEE/CVF International Conference on Computer Vision, 763. DOI.

    Chapter  Google Scholar 

  • Rahim, T., Hassan, S.A., Shin, S.Y.: 2021, A deep convolutional neural network for the detection of polyps in colonoscopy images. Biomed. Signal Process. Control 68, 102654. DOI.

    Article  Google Scholar 

  • Rahman, S., Moon, Y.-J., Park, E., Siddique, A., Cho, I.-H., Lim, D.: 2020, Super-resolution of SDO/HMI magnetograms using novel deep learning methods. Astrophys. J. Lett. 897(2), L32. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2022, Energy spectra vs. element abundances in solar energetic particles and the roles of magnetic reconnection and shock acceleration. Solar Phys. 297(3), 32. DOI.

    Article  ADS  Google Scholar 

  • Sara, U., Akter, M., Uddin, M.S.: 2019, Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. J. Comput. Phys. Commun. 7(3), 8. DOI.

    Article  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., The MDI Engineering Team: 1995, The solar oscillations investigation - Michelson Doppler imager. Solar Phys. 162, 129. DOI.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI.

    Article  ADS  Google Scholar 

  • Scully, J., Flynn, R., Carley, E., Gallagher, P., Daly, M.: 2023, Simulating solar radio bursts using generative adversarial networks. Solar Phys. 298(1), 6. DOI.

    Article  ADS  Google Scholar 

  • Song, W., Ma, W., Ma, Y., Zhao, X., Lin, G.: 2022, Improving the spatial resolution of solar images based on an improved conditional denoising diffusion probability model. Astrophys. J. Suppl. 263(2), 25. DOI.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the hinode mission: an overview. Solar Phys. 249(2), 167. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9(1), 1. DOI.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Rouppe van der Voort, L.: 2009, On the continuum intensity distribution of the solar photosphere. Astron. Astrophys. 503(1), 225. DOI.

    Article  ADS  Google Scholar 

  • Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J., Liao, Q.: 2019, Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 21(12), 3106. DOI.

    Article  Google Scholar 

  • Zhu, G., Lin, G., Wang, D., Liu, S., Yang, X.: 2019, Solar filament recognition based on deep learning. Solar Phys. 294(9), 117. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the handling editor and anonymous referee for constructive comments and suggestions. We also thank members of the Institute for Space Weather Sciences for fruitful discussions. SOHO is an international cooperation project between ESA and NASA. SDO is a NASA mission. The SolarCNN model is implemented in Python and TensorFlow.

Funding

This work was supported in part by U.S. NSF grants AGS-1927578, AGS-2149748, AGS-2228996, and OAC-2320147.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and H.W. conceived the study. C.X. implemented the SolarCNN model. H.J. and Q.L. collected and prepared the data used in this study. All the authors reviewed the manuscript.

Corresponding authors

Correspondence to Jason T. L. Wang or Haimin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, J.T.L., Wang, H. et al. Super-Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using SDO/HMI Data and an Attention-Aided Convolutional Neural Network. Sol Phys 299, 36 (2024). https://doi.org/10.1007/s11207-024-02283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02283-1

Keywords

Navigation