Skip to main content
Log in

A Possible Connection between the de Vries Cycle and the Solar Dynamo

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The physical process constraining the most significant quasi-periodicity in cosmogenic radionuclide records and in reconstructed sunspot-number records, the sharply-defined ≈ 210-yr de Vries cycle, is unknown. It is found here to coincide within the measurement errors with the beat of the Schwabe cycle’s ≈ 1/10.0 yr Fourier-spectrum secondary frequency-peak, with the cycle’s ≈ 1/10.5-yr central Fourier peak which is also its autocorrelation period. The lesser-known, but just as significant de Vries companion-oscillation of ≈ 230-yr coincides with the beat of the ≈ 1/11.0 yr main frequency peak with the ≈ 1/10.5 yr period. In the classical solar-dynamo mode-typology based on symmetries, the three beating quasi-decadal periods would correspond to the dipole mode (≈ 11.0 yr), the quadrupole mode (putatively ≈ 10.0 yr in historical sunspot data), and the composite “mixed-parity” mode (≈ 10.5 yr). The secondary beat of the observed ≈ 210-yr and ≈ 230-yr bicentennial oscillations yields a 2310 yr period. This value is consistent with the prominent Hallstatt cycle’s estimated length of 2300 yr in the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No new data are used in this paper.

References

  • Ahluwalia, H.S., Ygbuhay, R.C.: 2016, Salient features of the new sunspot number time series. Solar Phys. 291(12), 3807. DOI.

    Article  ADS  Google Scholar 

  • Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI.

    Article  ADS  Google Scholar 

  • Baidolda, F.: 2017, Search for Planetary Influences on Solar Activity. Prof. J. Laskar. Ph. D. thesis, advisor. https://tel.archives-ouvertes.fr/tel-01690207.

  • Beer, J., Tobias, S.M., Weiss, N.O.: 2018, On long-term modulation of the Sun’s magnetic cycle. Mon. Not. Roy. Astron. Soc. 473, 1596. DOI.

    Article  ADS  Google Scholar 

  • Berger, W.: 2012, Hans E. Suess (1909 – 1993): radiocarbon, Sun and climate pioneer. Institution, Technical Report, 13, University of California, (San Diego), Scripps https://escholarship.org/uc/item/5bc4c0w7.

  • Carrasco, V.M.S., Aparicio, A.J.P., Vaquero, J.M., Gallego, M.C.: 2016, The new sunspot-number index and solar-cycle characteristics. Solar Phys. 291(9), 3045. DOI.

    Article  ADS  Google Scholar 

  • Cohen, T.J., Lintz, P.R.: 1974, Long term periodicities in the sunspot cycle. Nature 250, 398. DOI.

    Article  ADS  Google Scholar 

  • Cole, T.W.: 1973, Periodicities in solar activity. Solar Phys. 30, 103. DOI.

    Article  ADS  Google Scholar 

  • Damon, P.E., Peristykh, A.N.: 2000, Radiocarbon calibration and application to geophysics, solar physics, and astrophysics. Radiocarbon 42(1), 137. DOI.

    Article  Google Scholar 

  • Damon, P.E., Sonett, C.P.: 1991, Solar and terrestrial components of the atmospheric 14 C variation spectrum. In: Sonett, G.P., Giampapa, M.S., Matthews, M.S. (eds.) The Sun in Time, University of Arizona Space Science Series 360.

    Google Scholar 

  • De Vries, H.: 1958, Variation in concentration of radiocarbon with time and location on Earth. Koninkl. Nederlandse Akad. Wetensch. Proc., Ser. B 61(2), 94.

    Google Scholar 

  • Dergachev, V.A.: 2004, Manifestation of the long-term solar cyclicity in climate archives over 10 millennia. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity. Proceedings of IAU Symposium S223, St. Petersburg, Russia, June 14–19, 2004. Cambridge University Press, Cambridge, 699.

    Google Scholar 

  • Donahue, R.A., Baliunas, S.L.: 1992, Periodogram analysis of 240 years of sunspot records. Solar Phys. 141(1), 181. DOI.

    Article  ADS  Google Scholar 

  • Feynman, J., Ruzmaikin, A.: 2014, The Centennial Gleissberg Cycle and its association with extended minima. J. Geophys. Res. 119, 6027. DOI.

    Article  Google Scholar 

  • Fritz, H.: 1881, Das Polarlicht, Brockhaus, Leipzig, 162.

    Google Scholar 

  • Fyodorov, M.V., Klimenko, V.V., Dovgalyuk, V.V.: 1996, Sunspot minima dates: a secular forecast. Solar Phys. 165, 193. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357. DOI.

    Article  ADS  Google Scholar 

  • Houtermans, J.C.: 1971, Geophysical interpretations of Bristlecone pine radiocarbon measurements using a method of Fourier analysis of unequally spaced data. Dissertation (Ph. D. thesis), University of Bern, Switzerland.

  • Jayalekshmi, G.L., Prince, P.R.: 2014, Study of periodicities in relative sunspot numbers and disturbance storm time indices using wavelet techniques. Indian J. Phys. 88(12), 1221.

    Article  ADS  Google Scholar 

  • Kern, A.K., Harzhauser, M., Piller, W.E., Mandic, O., Soliman, A.: 2012, Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 329–330, 124. DOI.

    Article  Google Scholar 

  • Knudsen, M.F., Riisager, P., Jacobsen, B.H., Muscheler, R., Snowball, I., Seidenkrantz, M.-S.: 2009, Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Geophys. Res. Lett. 36(16), L16701. DOI.

    Article  ADS  Google Scholar 

  • Komitov, B.P.: 1997, Schove’s series, centurial and supercenturial variations of solar activity. Bulg. Geoph. J. 23, 69.

    ADS  Google Scholar 

  • Komitov, B.P., Kaftan, V.I.: 2003, Solar activity variations for the last millennia. Will the next long-period solar minimum be formed? Geomagn. Aeron. 43(5), 553.

    ADS  Google Scholar 

  • Kremliovsky, M.N.: 1994, Can we understand time scales of solar activity? Solar Phys. 151(2), 351.

    Article  ADS  Google Scholar 

  • Kuklin, G.V.: 1976, Cyclical and secular variations of solar activity. In: Bumba, V., Kleczek, J. (eds.) Proceedings of IAU Symposium No 71, Prague, Tchechoslovakia, 25–29 August 1975. Reidel, Dordrecht, 147.

    Google Scholar 

  • Le Mouël, J.L., Lopes, F., Courtillot, V.: 2017, Identification of Gleissberg cycles and a rising trend in a 315-year-long series of sunspot numbers. Solar Phys. 292(3), 43. DOI.

    Article  ADS  Google Scholar 

  • Li, T.-H.: 2014, Time Series with Mixed Spectra, CRC Press/Taylor & Francis, Boca Raton/London, 558. www.crcpress.com.

    Google Scholar 

  • Li, K.J., Gao, P.X., Su, T.W.: 2005, The Schwabe and Gleissberg periods in the Wolf sunspot numbers and the group sunspot numbers. Solar Phys. 229(1), 181. DOI.

    Article  ADS  Google Scholar 

  • Lomb, N.R.: 2013, The sunspot cycle revisited. J. Phys. Conf. Ser. 440(1), 012042. DOI.

    Article  Google Scholar 

  • Ma, L.H., Vaquero, J.M.: 2009, Is the Suess cycle present in historical naked-eye observations of sunspots? New Astron. 14(3), 307. DOI.

    Article  ADS  Google Scholar 

  • McCracken, K., Beer, J., Steinhilber, F., Abreu, J.: 2013, A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Solar Phys. 286(2), 609. DOI.

    Article  ADS  Google Scholar 

  • Mudelsee, M.: 2010, Climate Time Series Analysis, 1st edn. Springer, Cham 195.

    Book  Google Scholar 

  • Nesme-Ribes, E., Sokoloff, D.D., Ribes, J.C., Kremliovsky, M.: 1994, The Maunder minimum and the solar dynamo. In: Nesme-Ribes, E. (ed.) The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate, NATO ASI Series 25, Springer, Berlin, 527.

    Chapter  Google Scholar 

  • Nordemann, D.J.R., Trivedi, N.B.: 1992, Sunspot number time series: exponential fitting and periodicities. Solar Phys. 142(2), 411. DOI.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Pipin, V.V., Sokoloff, D., Shibalova, A.S.: 2021, Solar large-scale magnetic field and cycle patterns in solar dynamo. Mon. Not. Roy. Astron. Soc. 504(4), 4990. DOI.

    Article  ADS  Google Scholar 

  • Otaola, J.A., Zenteno, G.: 1983, On the existence of long-term periodicities in solar activity. Solar Phys. 89(1), 209. DOI.

    Article  ADS  Google Scholar 

  • Pearson, G., Stuiver, M.: 1986, High-precision calibration of the radiocarbon time scale, 500–2500 bc. Radiocarbon 28(2B), 839. DOI.

    Article  Google Scholar 

  • Peristykh, A.N., Damon, P.E.: 2003, Persistence of the Gleissberg 88-year solar cycle over the last ≈ 12,000 years: evidence from cosmogenic isotopes. J. Geophys. Res. 108(A1), 1003. DOI.

    Article  Google Scholar 

  • Quiroga-Lombard, C.S., Balenzuela, P., Braun, H., Chialvo, D.B.: 2010, A simple conceptual model to interpret the 100 000 years dynamics of paleo-climate records. Nonlinear Process. Geophys. 17(5), 585. DOI.

    Article  ADS  Google Scholar 

  • Rabin, D., Wilson, R.M., Moore, R.L.: 1986, Bimodality of the solar cycle. Geophys. Res. Lett. 13(4), 352. DOI.

    Article  ADS  Google Scholar 

  • Rangarajan, G.K.: 1998, Sunspot variability and an attempt to predict solar cycle 23 by adaptive filtering. Earth Planets Space 50, 9.1.

    Article  Google Scholar 

  • Raynaud, R., Tobias, S.M.: 2016, Convective dynamo action in a spherical shell: symmetries and modulation. J. Fluid Mech. 799, R6. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Reimer, P.J., et al.: 2020, The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0 – 55 cal kBP). Radiocarbon 62(4), 725. DOI. Time series and curves at www.intcal.org.

    Article  Google Scholar 

  • Richard, J.-G.: 2020, RecursiveiInteger sequences, detected in solar-cycle periodicities measured in numbers of rigid rotations of the Sun. Solar Phys. 295(6), 78. DOI.

    Article  ADS  Google Scholar 

  • Rozelot, J.P.: 1994, On the stability of the 11-year solar cycle period (and a few others). Solar Phys. 149(1), 149. DOI.

    Article  ADS  Google Scholar 

  • Sanderson, T.R., Appourchaux, T., Hoeksema, J.T., Harvey, K.L.: 2003, Observations of the Sun’s magnetic field during the recent solar maximum. J. Geophys. Res. 108(A1), 1035. DOI.

    Article  Google Scholar 

  • Schove, D.J.: 1955, The sunspot cycle 649 BC to 2000 AD. J. Geophys. Res. 60(2), 127. DOI.

    Article  ADS  Google Scholar 

  • Schwabe, H.S.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21(15), 233.

    ADS  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084. DOI.

    Article  ADS  Google Scholar 

  • Sonett, C.P.: 1990, Atmospheric 14 C variations: a Bayesian prospect. In: Fougère, P.F. (ed.) Maximum Entropy and Bayesian Methods, Kluwer Academic, Dordrecht, 143.

    Chapter  Google Scholar 

  • Sonett, C.P., Finney, S.A., Berger, A.: 1990, The spectrum of radiocarbon: discussion. Phil. Trans. Roy. Soc. London A 330(1615), 413. DOI.

    Article  ADS  Google Scholar 

  • Stuiver, M., Pearson, G.: 1986, High-precision calibration of the radiocarbon time scale, AD 1950-500 BC. Radiocarbon 28(2B), 805. DOI.

    Article  Google Scholar 

  • Suess, H.E.: 1980, The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22(2), 200.

    Article  Google Scholar 

  • Tan, B.: 2011, Multi-timescale solar cycles and the possible implications. Astrophys. Space Sci. 332(1), 65. DOI.

    Article  ADS  Google Scholar 

  • Thomson, D.J.: 1990, Time series analysis of Holocene climate data. Phil. Trans. Roy. Soc. London A 330(1615), 601. DOI.

    Article  ADS  Google Scholar 

  • Tlatov, A.G.: 2015, The change of the solar cyclicity mode. Adv. Space Res. 55(3), 851. DOI.

    Article  ADS  Google Scholar 

  • Torregrosa Alberola, A.: 2017, Analysis del ciclo de actividad solar y su influencia en la Tierra. Final year degree project work (advisor: T. Roca Cortès), Astrophysics Dept., Universidad de la Laguna (ULL), Tenerife, Spain. https://riull.ull.es/xmlui/bitstream/handle/915/4276/Analisis+del+ciclo+de+actividad+solar+y+su+influencia+en+la+Tierra.pdf?sequence=1.

  • Usoskin, I.G., Hulot, G., Gallet, Y., Roth, R., Licht, A., Joos, F., Kovaltsov, G.A., Thébault, E., Khokhlov, A.: 2014, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10. DOI.

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Solanki, S.K., Krivova, N.A., Hofer, B., Kovaltsov, G.A., Wacker, L., Brehm, N., Kromer, B.: 2021, Solar cyclic activity over the last millennium reconstructed from annual 14C data. Astron. Astrophys. 649, A141. DOI.

    Article  ADS  Google Scholar 

  • Vecchio, A., Lepreti, F., Laurenza, M., Alberti, T., Carbone, V.: 2017, Connection between solar activity cycles and grand minima generation. Astron. Astrophys. 599, A58. DOI.

    Article  ADS  Google Scholar 

  • Weiss, N.O., Tobias, S.M.: 2016, Supermodulation of the Sun’s magnetic activity: the effects of symmetry changes. Mon. Not. Roy. Astron. Soc. 456(3), 2654. DOI.

    Article  ADS  Google Scholar 

  • Weiss, N.O., Knobloch, E., Tobias, S.M.: 1998, Modulation and symmetry changes in stellar dynamos. In: Chossat, P., et al. (eds.) Dynamo and Dynamics: A Mathematical Challenge, Kluwer Academic, Dordrecht 381.

    Google Scholar 

  • Wolf, R.: 1859, Schreiben des Herrn Professor Wolf an den Herausgeber. Astron. Nachr. 50(21), 325.

    Article  ADS  Google Scholar 

  • Yin, Z.Q., Ma, L.H., Han, Y.B., Han, Y.G.: 2007, Long-term variations of solar activity. Chin. Sci. Bull. 52(20), 2737. DOI.

    Article  Google Scholar 

  • Zhu, F.R., Jia, H.Y.: 2018, Lomb–Scargle periodogram analysis of the periods around 5.5 year and 11 year in the international sunspot numbers. Astrophys. Space Sci. 363(7), 138. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The idea of a paper about the de Vries cycle and decadal dynamo modes was sparked by conversations with Dr. A. Ruzmaikin and Prof. M. Schüssler at Space Climate 7 Symposium in Canton Orford (Canada) in July 2019. The author thanks Prof. D. D. Sokoloff and Prof. I. G. Usoskin for their personal communications. He is indebted to Dr. P. Reimer for her advice on the IntCal20 record. The author is grateful to Dr. F.-G. Carpentier and to Dr. I. Rivals for generously communicating their separate analyses of several IntCal20 time series. He is thankful to Dr. F.-G. Carpentier for his advice, and to Dr. A. Strugarek for an interesting conversation on dynamo symmetries. The author thanks an anonymous reviewer for his/her expert reading and assessment. This paper is dedicated to the memories of three late pioneers of the solar-beat conjecture: Dr. W. Berger, Dr. J. Feynman, and Dr. E. Nesme-Ribes.

Author information

Authors and Affiliations

Authors

Contributions

Jean-Guillaume RICHARD is the sole author of this manuscript.

Corresponding author

Correspondence to Jean-Guillaume Richard.

Ethics declarations

Disclosure of potential conflicts of interest

The author declares to have no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Centennial Oscillation in Solar Activity: Spectral estimates

Appendix: Centennial Oscillation in Solar Activity: Spectral estimates

Table A.1 Eighteen estimates of the centennial-periodicity length in sunspot-number records.
Table A.2 Estimates of the \(105 \pm 1\) yr spectral line in CR, RSN, and RSM records.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, JG. A Possible Connection between the de Vries Cycle and the Solar Dynamo. Sol Phys 297, 124 (2022). https://doi.org/10.1007/s11207-022-02052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02052-y

Navigation