Skip to main content
Log in

Is the Subsurface Meridional Flow Zero at the Equator?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the subsurface meridional flow and its divergence from the surface to a depth of about 16 Mm at the equator and its variation with the solar cycle derived with ring-diagram analysis applied to Michelson Doppler Imager (MDI) Dynamics Program, Global Oscillation Network Group (GONG), and Helioseismic and Magnetic Imager (HMI) Dopplergrams. The meridional flow at the equator is small but nonzero and is mainly negative (southward) during Solar Cycle 23 with an average of \(-1.1 \pm 0.2~\text{m}\,\text{s}^{-1}\) at depths shallower than 7 Mm and positive (northward) during Solar Cycle 24 with an average of \(+1.3 \pm 0.1~\text{m}\,\text{s}^{-1}\) over the same depth range derived from supersynoptic maps of combined HMI and GONG data (scaled to match HMI flow amplitudes). The divergence in supersynoptic maps is positive at all times and clearly varies with the solar cycle with large values during cycle maxima and small values during minima. On time scales of synoptic maps, we found that at depths shallower than 10 Mm the cross-equatorial flow is, on average, toward the hemisphere with the larger amount of flux. The meridional flow at the equator has broad distributions with widths that are at least five times larger than the mean values. The distributions of Solar Cycles 23 and 24 overlap but are distinguishable. For a high-activity subset, the cross-equatorial flow is predominantly toward locations with high activity and the divergence is greater than average. The nonzero cross-equatorial flow is in this case a consequence of the inflows present near active regions and the imbalance of activity between the hemispheres. For a quiet-region subset, the cross-equatorial flow is, on average, in the same direction as the average flow over a solar cycle with a similar broad distribution, while the quiet-region divergence is smaller than the grand average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data Availability

The original flow maps are available at jsoc.stanford.edu for SDO/HMI and at gong.nso.edu/data for GONG data, while NSO/NISP magnetograms are available at nso.edu/data/nisp-data/. The processed data are available on reasonable application to the author.

References

  • Baldner, C.S., Schou, J.: 2012, Effects of asymmetric flows in solar convection on oscillation modes. Astrophys. J. Lett. 760, L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M., Bogart, R.S.: 2004, Ring-diagram analysis of the structure of solar active regions. Astrophys. J. 610, 1157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bisoi, S.K., Janardhan, P.: 2020, A new tool for predicting the solar cycle: correlation between flux transport at the equator and the poles. Solar Phys. 295, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011a, HMI ring diagram analysis I. The processing pipeline. J. Phys. Conf. Ser. 271, 012008. DOI. ADS.

    Article  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011b, HMI ring diagram analysis II. Data products. J. Phys. Conf. Ser. 271, 012009. DOI. ADS.

    Article  Google Scholar 

  • Braun, D.C.: 2019, Flows around averaged solar active regions. Astrophys. J. 873, 94. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bumba, V., Howard, R.: 1969, Solar activity and recurrences in magnetic-field distribution. Solar Phys. 7, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2007, What to look for in the seismology of solar active regions. Astron. Nachr. 328, 286. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Schüssler, M.: 2012, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron. Astrophys. 548, A57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Dasi-Espuig, M., Jiang, J., Işık, E., Schmitt, D., Schüssler, M.: 2013, Limits to solar cycle predictability: cross-equatorial flux plumes. Astron. Astrophys. 557, A141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schüssler, M., Gizon, L.: 2014, Physical causes of solar cycle amplitude variability. J. Geophys. Res. 119, 680. DOI. ADS.

    Article  Google Scholar 

  • Charbonneau, P.: 2020, Dynamo models of the solar cycle. Living Rev. Solar Phys. 17, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, R., Zhao, J.: 2018, Temporal evolution of solar meridional flow in the deep interior during 2010 – 2018. In: Catalyzing Solar Connections, 55. ADS.

    Google Scholar 

  • Corbard, T., Toner, C., Hill, F., Hanna, K.D., Haber, D.A., Hindman, B.W., Bogart, R.S.: 2003, Ring-diagram analysis with GONG++. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, ESA SP 517, 255. ADS.

    Google Scholar 

  • Couvidat, S., Schou, J., Hoeksema, J.T., Bogart, R.S., Bush, R.I., Duvall, T.L., Liu, Y., Norton, A.A., Scherrer, P.H.: 2016, Observables processing for the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory. Solar Phys. 291, 1887. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Cameron, R.H., Pourabdian, M., Liang, Z.-C., Fournier, D., Birch, A.C., Hanson, C.S.: 2020, Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gottschling, N., Schunker, H., Birch, A.C., Löptien, B., Gizon, L.: 2021, Evolution of solar surface inflows around emerging active regions. Astron. Astrophys. 652, A148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Thompson, M.J., Hill, F.: 2000, Solar shear flows deduced from helioseismic dense-pack samplings of ring diagrams. Solar Phys. 192, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harvey, J., Tucker, R., Britanik, L.: 1998, High resolution upgrade of the GONG instruments. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, ESA Special Publication 418, 209. ADS.

    Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harvey, K.L., Zwaan, C.: 1993, Properties and emergence of bipolar active regions. Solar Phys. 148, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hill, F.: 1988, Rings and trumpets – three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Baldner, C.S., Bush, R.I., Schou, J., Scherrer, P.H.: 2018, On-orbit performance of the Helioseismic and Magnetic Imager instrument onboard the Solar Dynamics Observatory. Solar Phys. 293, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Komm, R.W., Hill, F., Haber, D.A., Hindman, B.W.: 2004, Activity-related changes in local solar acoustic mode parameters from Michelson Doppler imager and global oscillations network group. Astrophys. J. 608, 562. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Gosain, S.: 2019, Kinetic helicity and lifetime of activity complexes during solar cycle 24. Astrophys. J. 887, 192. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2011, Subsurface velocity of emerging and decaying active regions. Solar Phys. 268, 407. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2017, Solar-cycle variation of subsurface-flow divergence: a proxy of magnetic activity? Solar Phys. 292, 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2018, Subsurface zonal and meridional flow during cycles 23 and 24. Solar Phys. 293, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2020, Solar-cycle variation of the subsurface flows of active- and quiet-region subsets. Solar Phys. 295, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2021, Divergence and vorticity of subsurface flows during solar cycles 23 and 24. Solar Phys. 296, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R.W., Howard, R.F., Harvey, J.W.: 1993, Meridional flow of small photospheric magnetic features. Solar Phys. 147, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015a, Solar-cycle variation of subsurface meridional flow derived with ring-diagram analysis. Solar Phys. 290, 3113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015b, Subsurface zonal and meridional flow derived from GONG and SDO/HMI: a comparison of systematics. Solar Phys. 290, 1081. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liang, Z.-C., Gizon, L., Birch, A.C., Duvall, T.L., Rajaguru, S.P.: 2018, Solar meridional circulation from twenty-one years of SOHO/MDI and SDO/HMI observations. Helioseismic travel times and forward modeling in the ray approximation. Astron. Astrophys. 619, A99. DOI. ADS.

    Article  Google Scholar 

  • Liu, Y., Zhao, J., Schuck, P.W.: 2013, Horizontal flows in the photosphere and subphotosphere of two active regions. Solar Phys. 287, 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Löptien, B., Birch, A.C., Duvall, T.L., Gizon, L., Proxauf, B., Schou, J.: 2017, Measuring solar active region inflows with local correlation tracking of granulation. Astron. Astrophys. 606, A28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Yeates, A.R.: 2012, The sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys. 9, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martin-Belda, D., Cameron, R.H.: 2016, Surface flux transport simulations: effect of inflows toward active regions and random velocities on the evolution of the Sun’s large-scale magnetic field. Astron. Astrophys. 586, A73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martin-Belda, D., Cameron, R.H.: 2017, Inflows towards active regions and the modulation of the solar cycle: a parameter study. Astron. Astrophys. 597, A21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Norton, A.A., Charbonneau, P., Passos, D.: 2014, Hemispheric coupling: comparing dynamo simulations and observations. Space Sci. Rev. 186, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2020, Solar cycle prediction. Living Rev. Solar Phys. 17, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Poulier, P.-L.: 2022, Helioseismic diagnostics of solar surface dynamics in the near-surface layers. PhD thesis, Georg August University of Gottingen, Germany. ADS.

  • Rabello-Soares, M.C., Bogart, R.S., Scherrer, P.H.: 2016, Statistical analysis of acoustic wave parameters near solar active regions. Astrophys. J. 827, 140. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Toner, C.G.: 2001, On the absolute alignment of GONG images. In: Wilson, A., Pallé, P.L. (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, ESA Special Publication 464, 355. ADS.

    Google Scholar 

  • Toner, C., Goodrich, J., Shroff, C., Kneale, R.: 2004, A first look at the June 8, 2004 Venus transit as observed by GONG. In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, ESA Special Publication 559, 657. ADS.

    Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Magnetic flux transport on the Sun. Science 245, 712. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Nagashima, K., Bogart, R.S., Kosovichev, A.G., Duvall, T.L. Jr.: 2012, Systematic center-to-limb variation in measured helioseismic travel times and its effect on inferences of solar interior meridional flows. Astrophys. J. Lett. 749, L5. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The data used here are courtesy of NASA/SDO and the HMI Science Team. This work also utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. I thank Mark DeRosa whose presentation about flux transport gave me the idea for this study.

Funding

This work was supported by NASA grants 80NSSC18K1206, 80NSSC19K0261, and 80NSSC20K0194 to the National Solar Observatory and by NASA grant NNH18ZDA001N-DRIVE to Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Komm.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Celebrating a Solar Cycle of Discovery with SDO

Guest Editors: Dean Pesnell, Ryan Milligan and Shin Toriumi

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komm, R. Is the Subsurface Meridional Flow Zero at the Equator?. Sol Phys 297, 99 (2022). https://doi.org/10.1007/s11207-022-02027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02027-z

Keywords

Navigation