Skip to main content
Log in

Distinguishing the Rigidity Dependences of Acceleration and Transport in Solar Energetic Particles

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In solar energetic particle (SEP) events, the power-law dependence of element abundance enhancements on their mass-to-charge ratios [\(A/Q\)] provides a new tool that measures the combined rigidity dependences from both acceleration and transport. Distinguishing between these two processes can be challenging. However, the effects of acceleration dominate when SEP events are small or when the ions propagate scatter-free, and transport can dominate the temporal time evolution of large events with streaming-limited intensities. Magnetic reconnection in solar jets produces positive powers of \(A/Q\) from +2 to +7 and shock acceleration produces mostly negative powers from −2 to +1 in small and moderate SEP events where transport effects are minimal. This variation in the rigidity dependence of shock acceleration may reflect the non-planar structure, complexity, and temporal time variation of coronal shocks themselves. Wave amplification by streaming protons in the largest SEP events suppresses the escape of ions with low \(A/Q\), creating observed powers of \(A/Q\) from +1 to +3 upstream of the accelerating shock, decreasing to small negative powers downstream. For shock acceleration, the powers of \(A/Q\) are correlated with the energy spectral indices of He, O, and Fe, yet unexplained departures exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Afanasiev, A., Battarbee, M., Vainio, R.: 2016, Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: effect of anisotropic pitch-angle scattering of particles. Astron. Astrophys. 584, 81. DOI.

    Article  Google Scholar 

  • Bell, A.R.: 1978a, The acceleration of cosmic rays in shock fronts. I. Mon. Not. Roy. Astron. Soc. 182, 147. DOI.

    Article  ADS  Google Scholar 

  • Bell, A.R.: 1978b, The acceleration of cosmic rays in shock fronts. II. Mon. Not. Roy. Astron. Soc. 182, 443. DOI.

    Article  ADS  Google Scholar 

  • Breneman, H.H., Stone, E.C: 1985, Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. Lett. 299, L57. DOI.

    Article  ADS  Google Scholar 

  • Bučík, R.: 2020, 3He-rich solar energetic particles: solar sources. Space Sci. Rev. 216, 24. DOI.

    Article  ADS  Google Scholar 

  • Bučík, R., Innes, D.E., Mall, U., Korth, A., Mason, G.M., Gómez-Herrero, R.: 2014, Multi-spacecraft observations of recurrent 3He-rich solar energetic particles. Astrophys. J. 786, 71. DOI.

    Article  ADS  Google Scholar 

  • Bučík, R., Innes, D.E., Chen, N.H., Mason, G.M., Gómez-Herrero, R., Wiedenbeck, M.E.: 2015, Long-lived energetic particle source regions on the Sun. J. Phys. Conf. Ser. 642, 012002. DOI.

    Article  Google Scholar 

  • Bučík, R., Innes, D.E., Mason, G.M., Wiedenbeck, M.E., Gómez-Herrero, R., Nitta, N.V.: 2018a, 3He-rich solar energetic particles in helical jets on the Sun. Astrophys. J. 852, 76. DOI.

    Article  ADS  Google Scholar 

  • Bučík, R., Wiedenbeck, M.E., Mason, G.M., Gómez-Herrero, R., Nitta, N.V., Wang, L.: 2018b, 3He-rich solar energetic particles from sunspot jets. Astrophys. J. Lett. 869, L21. DOI.

    Article  ADS  Google Scholar 

  • Chen, N.H., Bučík, R., Innes, D.E., Mason, G.M.: 2015, Case studies of multi-day 3He-rich solar energetic particle periods. Astron. Astrophys. 580, 16. DOI.

    Article  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI.

    Article  ADS  Google Scholar 

  • Cohen, C.M.S., Mason, G.M., Mewaldt, R.A., Wiedenbeck, M.E.: 2014, The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys. J. 794, 35. DOI.

    Article  ADS  Google Scholar 

  • Desai, M.I., Giacalone, J.: 2016, Large gradual solar energetic particle events. Liv. Rev. Solar Phys. DOI.

    Article  Google Scholar 

  • Desai, M.I., Mason, G.M., Dwyer, J.R., Mazur, J.E., Gold, R.E., Krimigis, S.M., Smith, C.W., Skoug, R.M.: 2003, Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. Astrophys. J. 588, 1149. DOI.

    Article  ADS  Google Scholar 

  • Drake, J.F., Cassak, P.A., Shay, M.A., Swisdak, M., Quataert, E.: 2009, A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. Lett. 700, L16. DOI.

    Article  ADS  Google Scholar 

  • Ellison, D.C., Möbius, E., Paschmann, G.: 1990, Particle injection and acceleration at Earth’s bow shock: comparison of upstream and downstream events. Astrophys. J. 352, 376. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of Ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937. DOI.

    Article  ADS  Google Scholar 

  • Hu, J., Li, G., Ao, X., Verkhoglyadova, O., Zank, G.: 2017, Modeling particle acceleration and transport at a 2D CME-driven shock. J. Geophys. Res. 122, 10,938. DOI.

    Article  Google Scholar 

  • Hu, J., Li, G., Fu, S., Zank, G., Ao, X.: 2018, Modeling a single SEP event from multiple vantage points using the iPATH model. Astrophys. J. Lett. 854, L19. DOI.

    Article  ADS  Google Scholar 

  • Jones, F.C., Ellison, D.C.: 1991, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259. DOI.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Reames, D.V., Sheeley, N.R. Jr.: 2001, Coronal mass ejections associated with impulsive solar energetic particle events. Astrophys. J. 562, 558. DOI.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J.: 1984, Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683. DOI.

    Article  ADS  Google Scholar 

  • Kajdič, P., Preisser, L., Blanco-Cano, X., Burgess, D., Trotta, D.: 2019, First observations of irregular surface of interplanetary shocks at ion scales by Cluster. Astrophys. J. Lett. 874, L13. DOI.

    Article  ADS  Google Scholar 

  • Kouloumvakos, A., Rouillard, A.P., Wu, Y., Vainio, R., Vourlidas, A., Plotnikov, I., Afanasiev, A., Önel, H.: 2019, Connecting the properties of coronal shock waves with those of solar energetic particles. Astrophys. J. 876, 80. DOI.

    Article  ADS  Google Scholar 

  • Laming, J.M.: 2015, The FIP and inverse FIP effects in solar and stellar coronae. Liv. Rev. Solar Phys. 12, 2. DOI.

    Article  ADS  Google Scholar 

  • Laming, J.M., Vourlidas, A., Korendyke, C., Chua, D., Cranmer, S.R., Ko, Y.-K., et al.: 2019, Element abundances: a new diagnostic for the solar wind. Astrophys. J. 879, 124. DOI.

    Article  ADS  Google Scholar 

  • Lario, D., Decker, R.B., Roelof, E.C., Viñas, A.-F.: 2015, Energetic particle pressure at interplanetary shocks: STEREO-A observations. Astrophys. J. 813, 85. DOI.

    Article  ADS  Google Scholar 

  • Lee, M.A.: 1983, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 88, 6109. DOI.

    Article  ADS  Google Scholar 

  • Lee, M.A.: 2005, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38. DOI.

    Article  ADS  Google Scholar 

  • Lee, M.A., Mewaldt, R.A., Giacalone, J.: 2012, Shock acceleration of ions in the heliosphere. Space Sci. Rev. 173, 247. DOI.

    Article  ADS  Google Scholar 

  • Mason, G.M.: 2007, 3He-rich solar energetic particle events. Space Sci. Rev. 130, 231. DOI.

    Article  ADS  Google Scholar 

  • Mason, G.M., Gloeckler, G., Hovestadt, D.: 1984, Temporal variations of nucleonic abundances in solar flare energetic particle events. II – Evidence for large-scale shock acceleration. Astrophys. J. 280, 902. DOI.

    Article  ADS  Google Scholar 

  • Mason, G.M., Mazur, J.E., Dwyer, J.R.: 1999, 3He enhancements in large solar energetic particle events. Astrophys. J. Lett. 525, L133. DOI.

    Article  ADS  Google Scholar 

  • Mason, G.M., Ng, C.K., Klecker, B., Green, G.: 1989, Impulsive acceleration and scatter-free transport of about 1 MeV per nucleon ions in 3He-rich solar particle events. Astrophys. J. 339, 529. DOI.

    Article  ADS  Google Scholar 

  • Mason, G.M., Mazur, J.E., Dwyer, J.R., Jokippi, J.R., Gold, R.E., Krimigis, S.M.: 2004, Abundances of heavy and ultraheavy ions in 3He-rich solar flares. Astrophys. J. 606, 555. DOI.

    Article  ADS  Google Scholar 

  • Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: Rate coefficients for all atoms and ions of the elements H to Ni. Astron. Astrophys. Suppl. Ser. 133, 403. DOI.

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Cohen, C.M.S., Leske, R.A., Christian, E.R., Cummings, A.C., Stone, E.C., von Rosenvinge, T.T., Wiedenbeck, M.E.: 2002, Fractionation of solar energetic particles and solar wind according to first ionization potential. Adv. Space Res. 30, 79. DOI.

    Article  ADS  Google Scholar 

  • Meyer, J.-P.: 1985, The baseline composition of solar energetic particles. Astrophys. J. Suppl. 57, 151. DOI.

    Article  ADS  Google Scholar 

  • Mostafavi, P., Zank, G.P., Webb, G.M.: 2017, Structure of energetic particle mediated shocks revisited. Astrophys. J. 841, 4. DOI.

    Article  ADS  Google Scholar 

  • Ng, C.K., Reames, D.V.: 2008, Shock acceleration of solar energetic protons: the first 10 minutes. Astrophys. J. Lett. 686, L123. DOI.

    Article  ADS  Google Scholar 

  • Ng, C.K., Reames, D.V., Tylka, A.J.: 1999, Effect of proton-amplified waves on the evolution of solar energetic particle composition in gradual events. Geophys. Res. Lett. 26, 2145. DOI.

    Article  ADS  Google Scholar 

  • Ng, C.K., Reames, D.V., Tylka, A.J.: 2001, Abundances, spectra, and anisotropies in the 1998 Sep 30 and 2000 Apr 4 large SEP events. In: Kampert, K.-H., Hainzelmann, G., Spiering, C., Simon, M., Lorenz, E., Pohl, M., Droege, W., Kunow, H., Scholer, M. (eds.) Proc. 27th Int. Cosmic-Ray Conf., Hamburg, 8, Copernicus, Katlenburg-Lindau, 3140.

    Google Scholar 

  • Ng, C.K., Reames, D.V., Tylka, A.J.: 2003, Modeling shock-accelerated solar energetic particles coupled to interplanetary Alfvén waves. Astrophys. J. 591, 461. DOI.

    Article  ADS  Google Scholar 

  • Ng, C.K., Reames, D.V., Tylka, A.J.: 2012, Solar energetic particles: shock acceleration and transport through self-amplified waves. AIP Conf. Proc. 1436, 212. DOI.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1963, Interplanetary Dynamical Processes, Interscience, New York.

    MATH  Google Scholar 

  • Post, D.E., Jensen, R.V., Tarter, C.B., Grasberger, W.H., Lokke, W.A.: 1977, Steady-state radiative cooling rates for low-density, high temperature plasmas. Atom. Data Nucl. Data Tables 20, 397. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1988, Bimodal abundances in the energetic particles of solar and interplanetary origin. Astrophys. J. Lett. 330, L71. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1990, Acceleration of energetic particles by shock waves from large solar flares. Astrophys. J. Lett. 358, L63. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1995a, Coronal abundances determined from energetic particles. Adv. Space Res. 15(7), 41.

    Article  Google Scholar 

  • Reames, D.V.: 1995b, Solar energetic particles: a paradigm shift. Rev. Geophys. 33, 585. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90, 413. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2000, Abundances of trans-iron elements in solar energetic particle events. Astrophys. J. Lett. 540, L111. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2009, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2014, Element abundances in solar energetic particles and the solar corona. Solar Phys. 289, 977. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2015, What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci. Rev. 194, 303. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2016, Temperature of the source plasma in gradual solar energetic particle events. Solar Phys. 291, 911. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2017, Solar Energetic Particles, Lec. Notes Phys. 932, Springer, Berlin. DOI. ISBN 978-3-319-50870-2.

    Book  Google Scholar 

  • Reames, D.V.: 2018a, The “FIP effect” and the origins of solar energetic particles and of the solar wind. Solar Phys. 293, 47. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2018b, Abundances, ionization states, temperatures, and FIP in solar energetic particles. Space Sci. Rev. 214, 61. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2019a, Hydrogen and the abundances of elements in impulsive solar energetic-particle events. Solar Phys. 294, 37. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2019b, Hydrogen and the abundances of elements in gradual solar energetic-particle events. Solar Phys. 294, 69. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2019c, Excess H, suppressed He, and the abundances of elements in solar energetic particles. Solar Phys. 294, 141. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2020, Four distinct pathways to the element abundances in solar energetic particles. Space Sci. Rev. 216, 20. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Barbier, L.M., Ng, C.K.: 1996, The spatial distribution of particles accelerated by coronal mass ejection-driven shocks. Astrophys. J. 466, 473. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Cliver, E.W., Kahler, S.W.: 2014a, Abundance enhancements in impulsive solar energetic-particle events with associated coronal mass ejections. Solar Phys. 289, 3817. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Cliver, E.W., Kahler, S.W.: 2014b, Variations in abundance enhancements in impulsive solar energetic-particle events and related CMEs and flares. Solar Phys. 289, 4675. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Meyer, J.P., von Rosenvinge, T.T.: 1994, Energetic-particle abundances in impulsive solar flare events. Astrophys. J. Suppl. 90, 649. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Ng, C.K.: 1998, Streaming-limited intensities of solar energetic particles. Astrophys. J. 504, 1002. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Ng, C.K.: 2004, Heavy-element abundances in solar energetic particle events. Astrophys. J. 610, 510. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Ng, C.K.: 2010, Streaming-limited intensities of solar energetic particles on the intensity plateau. Astrophys. J. 723, 1286. DOI.

    Article  ADS  Google Scholar 

  • Reames, D.V., Ng, C.K., Berdichevsky, D.: 2001, Angular distributions of solar energetic particles. Astrophys. J. 550, 1064. DOI.

    Article  ADS  Google Scholar 

  • Trotta, D., Burgess, D., Prete, G., Perri, S., Zimbardo, G.: 2020, Particle transport in hybrid PIC shock simulations: a comparison of diagnostics. Mon. Not. Roy. Astron. Soc. 491, 580. DOI.

    Article  ADS  Google Scholar 

  • Tylka, A.J., Lee, M.A.: 2006, Spectral and compositional characteristics of gradual and impulsive solar energetic particle events. Astrophys. J. 646, 1319. DOI.

    Article  ADS  Google Scholar 

  • Tylka, A.J., Reames, D.V., Ng, C.K.: 1999, Observations of systematic temporal evolution in elemental composition during gradual solar energetic particle events. Geophys. Res. Lett. 26, 2141. DOI.

    Article  ADS  Google Scholar 

  • Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2005, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474. DOI.

    Article  ADS  Google Scholar 

  • von Rosenvinge, T.T., Barbier, L.M., Karsch, J., Liberman, R., Madden, M.P., Nolan, T., Reames, D.V., Ryan, L., Singh, S., Trexel, H.: 1995, The Energetic Particles: Acceleration, Composition, and Transport (EPACT) investigation on the Wind spacecraft. Space Sci. Rev. 71, 152. DOI.

    Article  Google Scholar 

  • Webber, W.R.: 1975, Solar and galactic cosmic ray abundances – a comparison and some comments. In: Pinkau, K. (ed.) Proc. 14th Int. Cosmic Ray Conf., Munich, 5, 1597. ADS.

    Google Scholar 

  • Zank, G.P., Rice, W.K.M., Wu, C.C.: 2000, Particle acceleration and coronal mass ejection driven shocks: a theoretical model. J. Geophys. Res. 105, 25079. DOI.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald V. Reames.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reames, D.V. Distinguishing the Rigidity Dependences of Acceleration and Transport in Solar Energetic Particles. Sol Phys 295, 113 (2020). https://doi.org/10.1007/s11207-020-01680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01680-6

Keywords

Navigation