Skip to main content
Log in

Magnetic Lasso: A New Kinematic Solar Wind Propagation Method

Magnetic Lasso Propagation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar wind propagation from the point of measurement to an arbitrary target in the heliosphere is an important input for heliospheric, planetary and cometary studies. In this paper a new kinematic propagation method, the magnetic lasso method is presented. Compared to the simple ballistic approach our method is based on reconstructing the ideal Parker spiral connecting the target with the Sun by testing a previously defined range of heliographic longitudes. The model takes into account the eventual evolution of stream–stream interactions and handles these with a simple model based on the dynamic pressure difference between the two streams. Special emphasis is given to input data cleaning by handling interplanetary coronal mass ejection events as data gaps due to their different propagation characteristics. The solar wind bulk velocity is considered radial and constant. Density and radial magnetic field are propagated by correcting with the inverse square of the radial distance. The model has the advantage that it can be coded easily and fitted to the problem; it is flexible in selecting and handling input data and requires little running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. Space Phys. 105(A5), 10465. DOI .

    Article  ADS  Google Scholar 

  • Barabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H., Holmstrom, M., Yamauchi, M., Asamura, K., Bochsler, P., et al.: 2006, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express mission. Space Sci. Rev. 126, 113. DOI .

    Article  ADS  Google Scholar 

  • Desch, M.D., Rucker, H.O.: 1983, The relationship between Saturn kilometric radiation and the solar wind. NASA Technical report, NASA-TM-85004, NAS 1.15:85004.

  • Erdős, G., Balogh, A.: 2010, North–South asymmetry of the location of the heliospheric current sheet revisited. J. Geophys. Res. Space Phys. 115, A01105. DOI .

    Article  ADS  Google Scholar 

  • Facskó, G., Honkonen, I., Zivkovic, T., Palin, L., Kallio, E., Agren, K., Opgenoorth, H., Tanskanen, E.I., Milan, S.: 2016, One year in the Earth’s magnetosphere: a global MHD simulation and spacecraft measurements. Space Weather 14, 351. DOI .

    Article  ADS  Google Scholar 

  • Gordeev, E., Facskó, G., Sergeev, V., Honkonen, I., Palmroth, M., Janhunen, P., Milan, S.: 2013, Verification of the GUMICS-4 global MHD code using empirical relationships. J. Geophys. Res. Space Phys. 118, 3138. DOI .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Wilcox, J.N., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet: 1978–1982. J. Geophys. Res. Space Phys. 88, 9910. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1985, Some macroscopic properties of Shock waves in the heliosphere. In: Stone, e.R.G., Tsurutani, B.T. (eds.) Collisionless Shocks in the Heliosphere: A Tutorial Review, American Geophysical Union, Washington DOI .

    Chapter  Google Scholar 

  • Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facskó, G., Pulkkinen, T.I.: 2012, The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation. J. Atmos. Solar-Terr. Phys. 80, 48. DOI .

    Article  ADS  Google Scholar 

  • Juusola, L., Facskó, G., Honkonen, I., Janhunen, P., Vanhamäki, H., Kauristie, K., Laitinen, T.V., Milan, S.E., Palmroth, M., Tanskanen, E.I., Viljanen, A.: 2014, Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements. Space Weather 12, 582. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Arge, C.N., Smith, D.A.: 2016, Using the WSA model to test the Parker spiral approximation for SEP event magnetic connections. Solar Phys. 291, 1829. DOI .

    Article  ADS  Google Scholar 

  • Kallio, E., Facskó, G.: 2015, Properties of plasma near the moon in the magnetotail, 2015. Planet. Space Sci. 115, 69. DOI .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI .

    Article  ADS  Google Scholar 

  • Mottez, F., Chanteur, G.: 1994, Surface crossing by a group of satellites: a theoretical study. J. Geophys. Res. Space Phys. 99, 13499.

    Article  ADS  Google Scholar 

  • Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium I. Solar Phys. 33, 483. DOI .

    Article  ADS  Google Scholar 

  • Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. Space Phys. 109, A02116. DOI .

    Article  ADS  Google Scholar 

  • Opitz, A., Fedorov, A., Wurz, P., et al.: 2010, Solar-wind bulk velocity throughout the inner heliosphere from multi-spacecraft measurements. Solar Phys. 264, 377. DOI .

    Article  ADS  Google Scholar 

  • Opitz, A., Karrer, R., Wurz, P., et al.: 2009, Temporal evolution of the solar wind bulk velocity at solar minimum by correlating the STEREO A and B PLASTIC measurements. Solar Phys. 256, 365. DOI .

    Article  ADS  Google Scholar 

  • Owens, M.J., Forsyth, R.J.: 2013, The heliospheric magnetic field. Living Rev. Solar Phys. 10, 5. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1965, Dynamical theory of the solar wind. Space Sci. Rev. 4(5–6), 666. DOI .

    Article  ADS  Google Scholar 

  • Pomoell, J., Poedts, S.: 2018, EUHFORIA: European heliospheric forecasting information asset. J. Space Weather Space Clim. 8, 14. DOI .

    Article  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. Space Phys. 106(A8), 15889. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Lionello, R.: 2011, Mapping solar wind streams from the sun to 1 AU: a comparison of techniques. Solar Phys. 270, 575. DOI .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Ness, N.F., Wilcox, J.M.: 1968, Influence of a solar active region on the interplanetary magnetic field. Solar Phys. 5, 240. DOI .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI .

    Article  ADS  Google Scholar 

  • Schulte in den Bäumen, H., Cairns, I.H., Robinson, P.A.: 2011, Modeling 1 AU solar wind observations to estimate azimuthal magnetic fields at the solar source surface. Geophys. Res. Lett. 38, L24101. DOI .

    Article  ADS  Google Scholar 

  • Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., Yokoyama, T.: 2005, Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. Space Phys. 110, A11208. DOI .

    Article  ADS  Google Scholar 

  • Taylor, M.G.G.T., Alexander, C., Altobelli, N., Fulle, M., Fulchignoni, M., Grün, E., Weissman, P.: 2015, Rosetta begins its comet tale. Science 347(6220), 387. DOI .

    Article  ADS  Google Scholar 

  • Timar, A., Nemeth, Z., Szego, K., Dosa, M., Opitz, A., Madanian, H., Goetz, C., Richter, I.: 2017, Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. Mon. Not. Roy. Astron. Soc. 469(Suppl 2), S723. DOI .

    Article  ADS  Google Scholar 

  • Vennerstrom, S., Olsen, N., Purucker, M., Acuña, M.H., Cain, J.C.: 2003, The magnetic field in the pile-up region at Mars, and its variation with the solar wind. Geophys. Res. Lett. 30, 1369. DOI .

    Article  ADS  Google Scholar 

  • Volwerk, M., Richter, I., Tsurutani, B., Götz, C., Altwegg, K., Broiles, T., et al.: 2016, Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov–Gerasimenko. Ann. Geophys. 34(1), 1. DOI .

    Article  ADS  Google Scholar 

  • Vörös, Z., Facskó, G., Khodachenko, M., Honkonen, I., Janhunen, P., Palmroth, M.: 2014, Windsock memory conditioned RAM (CO-RAM) pressure effect: forced reconnection in the Earth’s magnetotail. J. Geophys. Res. Space Phys. 119, 6273. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI .

    Article  ADS  Google Scholar 

  • Zieger, B., Hansen, K.C.: 2008, Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. Space Phys. 113, A08107. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K.C. Hansen and B. Zieger for providing solar wind propagations from their Michigan Solar Wind Model ( http://mswim.engin.umich.edu/ ). We also thank Géza Erdős, Zoltán Németh and Gábor Facskó for useful discussions, Klaudia Szabó, Anikó Timár and Lajos Földy for technical assistance. We acknowledge Elena Budnik and all the staff of CDPP and IC for the use of the AMDA database, supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse. The authors acknowledge the MEX IMA Experiment team and the OMNI database team for available data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dósa.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dósa, M., Opitz, A., Dálya, Z. et al. Magnetic Lasso: A New Kinematic Solar Wind Propagation Method. Sol Phys 293, 127 (2018). https://doi.org/10.1007/s11207-018-1340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1340-3

Keywords

Navigation