Skip to main content
Log in

Development of Active Regions: Flows, Magnetic-Field Patterns and Bordering Effect

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A qualitative analysis is given of the data on the full magnetic and velocity vector fields in a growing sunspot group, recorded nearly simultaneously with the Solar Optical Telescope on the Hinode satellite. Observations of a young bipolar subregion developing within AR 11313 were carried out on 9 – 10 October 2011. Our aim was to form an idea about the consistency of the observed pattern with the well-known rising-tube model of the formation of bipolar active regions and sunspot groups. We find from our magnetograms that the distributions of the vertical [\(B_{\mathrm {v}}\)] and the horizontal [\(B_{\mathrm {h}}\)] component of the magnetic field over the area of the magnetic subregion are spatially well correlated; in contrast, the rise of a flux-tube loop would result in a qualitatively different pattern, with the maxima of the two magnetic-field components spatially separated: the vertical field would be the strongest where either spot emerges, while the maximum horizontal-field strengths would be reached in between them. A specific feature, which we call the bordering effect, is revealed: some local extrema of \(B_{\mathrm {v}}\) are bordered with areas of locally enhanced \(B_{\mathrm {h}}\). This effect suggests a fountainlike spatial structure of the magnetic field near the \(B_{\mathrm {v}}\) extrema, which is also hardly compatible with the emergence of a flux-tube loop. The vertical-velocity field in the area of the developing active subregion does not exhibit any upflow on the scale of the whole subregion, which should be related to the rising-tube process. Thus, our observational data can hardly be interpreted in the framework of the rising-tube model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. As frequently done in the literature on stellar and planetary dynamos, we use here the terms toroidal and azimuthal as synonyms, although they are not mathematically equivalent.

  2. Since the area of interest was located near the solar-disc centre and, moreover, corrections for projection effects are not important from the standpoint of our goal, we do not make difference here between the line-of-sight and the vertical component and also between the transversal (tangential) and horizontal vector components.

References

  • Bumba, V.: 1963, Relation between motions and local magnetic fields in the photosphere. Bull. Astron. Inst. Czechoslov. 14, 1. ADS .

    ADS  Google Scholar 

  • Bumba, V.: 1967, Observations of solar magnetic and velocity fields. In: Rendiconti della Scuola Internazionale di Fisica “E. Fermi”, 39 Corso, 77.

    Google Scholar 

  • Bumba, V., Howard, R.: 1965, A study of the development of active regions on the Sun. Astrophys. J. 141, 1492. DOI . ADS .

    Article  ADS  Google Scholar 

  • Caligari, P., Moreno-Insertis, F., Schüssler, M.: 1995, Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886. DOI . ADS .

    Article  ADS  Google Scholar 

  • Caligari, P., Schüssler, M., Moreno-Insertis, F.: 1998, Emerging flux tubes in the solar convection zone. II. The influence of initial conditions. Astrophys. J. 502, 481. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cattaneo, F.: 1999, On the origin of magnetic fields in the quiet photosphere. Astrophys. J. Lett. 515, L39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4.

    Article  ADS  Google Scholar 

  • Fan, Y., Featherstone, N., Fang, F.: 2013, Three-dimensional MHD simulations of emerging active region flux in a turbulent rotating solar convective envelope: the numerical model and initial results. ArXiv e-prints, arXiv .

  • Getling, A.V., Buchnev, A.A.: 2010, Some structural features of the convective-velocity field in the solar photosphere. Astron. Rep. 54, 254. DOI . ADS .

    Article  ADS  Google Scholar 

  • Getling, A.V., Ishikawa, R., Buchnev, A.A.: 2015, Doubts about the crucial role of the rising-tube mechanism in the formation of sunspot groups. Adv. Space Res. 55, 862. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gurevich, L.E., Lebedinsky, A.I.: 1946, Magnetic field of Sun spots. J. Phys. USSR 10, 337.

    Google Scholar 

  • Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., Cruz, T.: 2008, Polarization calibration of the Solar Optical Telescope onboard Hinode. Solar Phys. 249, 233. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kitchatinov, L.L., Mazur, M.V.: 2000, Stability and equilibrium of emerged magnetic flux. Solar Phys. 191, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., Wray, A.A.: 2015, Realistic modeling of local dynamo processes on the Sun. Astrophys. J. 809, 84. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G.: 2009, Photospheric and subphotospheric dynamics of emerging magnetic flux. Space Sci. Rev. 144, 175. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Stenflo, J.O.: 2008, Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett. 688, L115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lites, B.W., Akin, D.L., Card, G., Cruz, T., Duncan, D.W., Edwards, C.G., Elmore, D.F., Hoffmann, C., Katsukawa, Y., Katz, N., Kubo, M., Ichimoto, K., Shimizu, T., Shine, R.A., Streander, K.V., Suematsu, A., Tarbell, T.D., Title, A.M., Tsuneta, S.: 2013, The Hinode spectro-polarimeter. Solar Phys. 283, 579. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lites, B., Casini, R., Garcia, J., Socas-Navarro, H.: 2007, A suite of community tools for spectro-polarimetric analysis. Mem. Soc. Astron. Ital. 78, 148. ADS .

    ADS  Google Scholar 

  • Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues. Solar Phys. 270, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1955, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A., Lamb, J.B.: 2006, Plasma flows in emerging sunspots in pictures. In: Leibacher, J., Stein, R.F., Uitenbroek, H. (eds.) Solar MHD Theory and Observations: A High Spatial Resolution Perspective, ASP Conf. Ser. 354, 249. ADS .

    Google Scholar 

  • Poisson, M., Mandrini, C.H., Démoulin, P., López Fuentes, M.: 2015, Evidence of twisted flux-tube emergence in active regions. Solar Phys. 290, 727. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rempel, M., Cheung, M.C.M.: 2014, Numerical simulations of active region scale flux emergence: From spot formation to decay. Astrophys. J. 785, 90. DOI . ADS .

  • Shimizu, T., Nagata, S., Tsuneta, S., Tarbell, T., Edwards, C., Shine, R., Hoffmann, C., Thomas, E., Sour, S., Rehse, R., Ito, O., Kashiwagi, Y., Tabata, M., Kodeki, K., Nagase, M., Matsuzaki, K., Kobayashi, K., Ichimoto, K., Suematsu, Y.: 2008, Image stabilization system for Hinode (Solar-B) Solar Optical Telescope. Solar Phys. 249, 221. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stein, R.F., Nordlund, Å.: 2012, On the formation of active regions. Astrophys. J. Lett. 753, L13. DOI . ADS .

    Article  ADS  Google Scholar 

  • Suematsu, Y., Tsuneta, S., Ichimoto, K., Shimizu, T., Otsubo, M., Katsukawa, Y., Nakagiri, M., Noguchi, M., Tamura, T., Kato, Y., Hara, H., Kubo, M., Mikami, I., Saito, H., Matsushita, T., Kawaguchi, N., Nakaoji, T., Nagae, K., Shimada, S., Takeyama, N., Yamamuro, T.: 2008, The Solar Optical Telescope of Solar-B (Hinode): The Optical Telescope Assembly. Solar Phys. 249, 197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tverskoi, B.A.: 1966, A Contribution to the theory of hydromagnetic self-excitation of regular magnetic fields. Geomagn. Aeron. 6, 7.

    ADS  Google Scholar 

  • Vögler, A., Schüssler, M.: 2007, A solar surface dynamo. Astron. Astrophys. 465, L43. DOI . ADS .

    Article  Google Scholar 

  • Warnecke, J., Losada, I.R., Brandenburg, A., Kleeorin, N., Rogachevskii, I.: 2013, Bipolar magnetic structures driven by stratified turbulence with a coronal envelope. Astrophys. J. Lett. 777, 2. ADS . arXiv .

    Article  Google Scholar 

  • Warnecke, J., Losada, I.R., Brandenburg, A., Kleeorin, N., Rogachevskii, I.: 2015, Bipolar region formation in stratified two-layer turbulence. ArXiv e-prints, arXiv .

Download references

Acknowledgements

Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). The work of A.V.G. and A.A.B. was supported by the Russian Foundation for Basic Research (project no. 12-02-00792-a). We are grateful to L.M. Alekseeva and to the reviewer for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Getling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getling, A.V., Ishikawa, R. & Buchnev, A.A. Development of Active Regions: Flows, Magnetic-Field Patterns and Bordering Effect. Sol Phys 291, 371–382 (2016). https://doi.org/10.1007/s11207-015-0844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0844-3

Keywords

Navigation