Skip to main content
Log in

Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Ensemble modeling of coronal mass ejections (CMEs) provides a probabilistic forecast of CME arrival time that includes an estimation of arrival-time uncertainty from the spread and distribution of predictions and forecast confidence in the likelihood of CME arrival. The real-time ensemble modeling of CME propagation uses the Wang–Sheeley–Arge (WSA)–ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time at the CCMC/Space Weather Research Center. The current implementation of this ensemble-modeling method evaluates the sensitivity of WSA–ENLIL+Cone model simulations of CME propagation to initial CME parameters. We discuss the results of real-time ensemble simulations for a total of 35 CME events that occurred between January 2013 – July 2014. For the 17 events where the CME was predicted to arrive at Earth, the mean absolute arrival-time prediction error was 12.3 hours, which is comparable to the errors reported in other studies. For predictions of CME arrival at Earth, the correct-rejection rate is 62 %, the false-alarm rate is 38 %, the correct-alarm ratio is 77 %, and the false-alarm ratio is 23 %. The arrival time was within the range of the ensemble arrival predictions for 8 out of 17 events. The Brier Score for CME arrival-predictions is 0.15 (where a score of 0 on a range of 0 to 1 is a perfect forecast), which indicates that on average, the predicted probability, or likelihood, of CME arrival is fairly accurate. The reliability of ensemble CME-arrival predictions is heavily dependent on the initial distribution of CME input parameters (e.g. speed, direction, and width), particularly the median and spread. Preliminary analysis of the probabilistic forecasts suggests undervariability, indicating that these ensembles do not sample a wide-enough spread in CME input parameters. Prediction errors can also arise from ambient-model parameters, the accuracy of the solar-wind background derived from coronal maps, or other model limitations. Finally, predictions of the K P geomagnetic index differ from observed values by less than one for 11 out of 17 of the ensembles and K P prediction errors computed from the mean predicted K P show a mean absolute error of 1.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  • Anderson, J.L.: 1996, A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate 9, 1518.

    Article  ADS  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrčil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: AIP Conference Proceedings, Twelfth International Solar Wind Conference 1216, 343. DOI .

    Google Scholar 

  • Bartels, J., Heck, N.H., Johnston, H.F.: 1939, The three-hour-range index measuring geomagnetic activity. J. Geophys. Res. 44, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bock, A., Mays, M.L., Rastaetter, L., Ynnerman, A., Ropinski, T.: 2014, VCMass: A framework for verification of coronal mass ejection ensemble simulations. In: IEEE Scientific Visualization Conference Abstracts.

    Google Scholar 

  • Brier, G.W.: 1950, Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1. ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO) Solar Phys. 162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cohen, C.M.S., Mason, G.M., Mewaldt, R.A., Wiedenbeck, M.E.: 2014, The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys. J. 793, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. 118, 6866. DOI . ADS .

    Article  Google Scholar 

  • Davies, J.A., Perry, C.H., Trines, R.M.G.M., Harrison, R.A., Lugaz, N., Möstl, C., Liu, Y.D., Steed, K.: 2013, Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry. Astrophys. J. 777, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1.

    Article  ADS  Google Scholar 

  • Dryer, M.: 1974, Interplanetary shock waves generated by solar flares. Space Sci. Rev. 51, 403.

    ADS  Google Scholar 

  • Dryer, M., Fry, C.D., Sun, W., Deehr, C., Smith, Z., Akasofu, S.-I., Andrews, M.D.: 2001, Prediction in real time of the 2000 July 14 heliospheric shock wave and its companions during the ‘Bastille’ epoch. Solar Phys. 204, 265. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emmons, D., Acebal, A., Pulkkinen, A., Taktakishvili, A., MacNeice, P., Odstrčil, D.: 2013, Ensemble forecasting of coronal mass ejections using the WSA–ENLIL with CONED Model. Space Weather 11, 95. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fry, C.D., Dryer, M., Smith, Z., Sun, W., Deehr, C.S., Akasofu, S.-I.: 2003, Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res. 108, 1070. DOI . ADS .

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hamill, T.M.: 2001, Interpretation of rank histograms for verifying ensemble forecasts. Mon. Weather Rev. 129, 550. ADS .

    Article  ADS  Google Scholar 

  • Hamill, T.M., Colucci, S.J.: 1997, Verification of Eta RSM short-range ensemble forecasts. Mon. Weather Rev. 125, 1312. ADS .

    Article  ADS  Google Scholar 

  • Harvey, L.O., Hammond, K.R., Lusk, C.M., Mross, E.F.: 1992, The application of signal detection theory to weather forecasting behavior. Mon. Weather Rev. 120, 863. ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. DOI . ADS .

    Article  ADS  Google Scholar 

  • Henney, C.J., Toussaint, W.A., White, S.M., Arge, C.N.: 2012, Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather 10, 2011. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Cid, C., Medina, J., Viñas, A.F.: 2000, A new model for the topology of magnetic clouds in the solar wind. Solar Phys. 194, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, T.A., DeForest, C.E.: 2012, The Thomson surface. I. Reality and myth. Astrophys. J. 752, 130. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima, M., Fujiki, K.: 2011, Three-dimensional reconstruction of heliospheric structure using iterative tomography: A review. J. Atmos. Solar-Terr. Phys. 73, 1214. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., MacNeice, P.J., Odstrčil, D., Riley, P., Linker, J.A., Skoug, R.M., Steinberg, J.T.: 2011, Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington rotations 2016 – 2018. Solar Phys. 273, 179. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jian, L.K., MacNeice, P.J., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Riley, P., Sokolov, I.V., Evans, R.M.: 2015, accepted, Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather.

  • Jolliffe, I.T., Stephenson, D.B. (eds.): 2011, Forecast Verification: A Practioner’s Guide in Atmospheric Science, 2nd edn. Wiley, New Jersey.

    Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lario, D., Raouafi, N.E., Kwon, R.-Y., Zhang, J., Gómez-Herrero, R., Dresing, N., Riley, P.: 2014, The solar energetic particle event on 2013 April 11: An investigation of its solar origin and longitudinal spread. Astrophys. J. 797, 8. DOI . ADS .

    Article  ADS  Google Scholar 

  • LaSota, J.A.: 2013, STEREO analysis. Undergraduate Honors Thesis, University of Alaska Fairbanks.

  • Lee, C.O., Arge, C.N., Odstrčil, D., Millward, G., Pizzo, V., Quinn, J.M., Henney, C.J.: 2013, Ensemble modeling of CME propagation. Solar Phys. 285, 349. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493. DOI . ADS .

    Article  ADS  Google Scholar 

  • MacNeice, P.: 2009, Validation of community models: 2. Development of a baseline using the Wang–Sheeley–Arge model. Space Weather 7, 12002. DOI . ADS .

    ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: A study using white-light and scintillation images. Solar Phys. 235, 345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mays, M.L., Taktakishvili, A., Romano, M., MacNeice, P.J., Zheng, Y., Pulkkinen, A.A., Kuznetsova, M.M., Odstrčil, D.: 2015, Validation of real-time modeling of coronal mass ejections using the WSA–ENLIL+Cone Heliospheric Model. Space Weather. (In preparation.)

  • McKenna-Lawlor, S.M.P., Dryer, M., Kartalev, M.D., Smith, Z., Fry, C.D., Sun, W., Deehr, C.S., Kecskemety, K., Kudela, K.: 2006, Near real-time predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23. J. Geophys. Res. 111, 11103. DOI . ADS .

    Article  Google Scholar 

  • Menvielle, M., Berthelier, A.: 1991, The K-derived planetary indices – Description and availability. Rev. Geophys. 29, 415. DOI . ADS .

    Article  ADS  Google Scholar 

  • Millward, G., Biesecker, D., Pizzo, V., Koning, C.A.: 2013, An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA–Enlil heliospheric model. Space Weather 11, 57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Müller, D., Dimitoglou, G., Caplins, B., Ireland, J., Wamsler, B., Hughitt, K., Agheksanterian, A. Amadigwe, D.: 2009, JHelioviewer – Visualizing large sets of solar data using JPEG 2000. Comput. Sci. Eng. 11, 38.

    Article  Google Scholar 

  • Murphy, A.H.: 1973, A new vector partition of the probability score. J. Appl. Meteorol. 12, 595.

    Article  ADS  Google Scholar 

  • Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F.J.: 2007, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112, 1206. DOI . ADS .

    Article  Google Scholar 

  • Odstrčil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res. 32, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999a, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. 104, 483. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999b, Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt. J. Geophys. Res. 104, 493. DOI . ADS .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. 109, 2116. DOI . ADS .

    Article  Google Scholar 

  • Odstrčil, D., Smith, Z., Dryer, M.: 1996, Distortion of the heliospheric plasma sheet by interplanetary shocks. Geophys. Res. Lett. 23, 2521. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pizzo, V.J., Biesecker, D.A.: 2004, Geometric localization of STEREO CMEs. Geophys. Res. Lett. 31, 21802. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pulkkinen, A., Oates, T., Taktakishvili, A.: 2010, Automatic determination of the conic coronal mass ejection model parameters. Solar Phys. 261, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pulkkinen, A.A., Taktakishvili, A., Odstrčil, D., MacNeice, P.J.: 2011, Ensemble forecasting of coronal mass ejection propagation in the interplanetary medium. NOAA Space Weather Workshop Abstracts.

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889. DOI . ADS .

    Article  ADS  Google Scholar 

  • Romano, M., Mays, M.L., Taktakishvili, A., MacNeice, P.J., Zheng, Y., Pulkkinen, A.A., Kuznetsova, M.M., Odstrčil, D.: 2013, Validation of real-time modeling of coronal mass ejections using the WSA–ENLIL+Cone Heliospheric Model. AGU Fall Meeting Abstracts, A2156. ADS .

  • Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. Space Phys. 10, 935. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sivillo, J.K., Ahlquist, J.E., Toth, Z.: 1997, An ensemble forecasting primer. Weather Forecast. 12, 809. ADS .

    Article  ADS  Google Scholar 

  • Smith, Z., Dryer, M.: 1990, Mhd study of temporal and spatial evolution of simulated interplanetary shocks in the ecliptic plane within 1 AU. Solar Phys. 129(2), 387. DOI .

    Article  ADS  Google Scholar 

  • Smith, Z.K., Dryer, M., McKenna-Lawlor, S.M.P., Fry, C.D., Deehr, C.S., Sun, W.: 2009, Operational validation of HAFv2’s predictions of interplanetary shock arrivals at Earth: Declining phase of Solar Cycle 23. J. Geophys. Res. 114, 5106. DOI . ADS .

    Article  Google Scholar 

  • Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35(9), 945.

    Google Scholar 

  • Taktakishvili, A., MacNeice, P., Odstrčil, D.: 2010, Model uncertainties in predictions of arrival of coronal mass ejections at Earth orbit. Space Weather 8, 6007. DOI . ADS .

    Article  ADS  Google Scholar 

  • Talagrand, O., Vautard, R., Strauss, B.: 1997, Evaluation of probabilistic prediction systems. In: Proceedings of the ECMWF Workshop on Predictability, ECMWF, Shinfield Park Reading, 157.

    Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA–ENLIL+Cone Model and Analytical Drag-Based Model. Astrophys. J. Suppl. 213, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Weigel, R.S., Detman, T., Rigler, E.J., Baker, D.N.: 2006, Decision theory and the analysis of rare event space weather forecasts. Space Weather 4, 5002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wilks, D.S.: 1995, Statistical Methods in Atmospheric Sciences: An Introduction, Academic Press, Massachusetts.

    Google Scholar 

  • Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: Application to space weather forecasting. J. Geophys. Res. 109, 3109. DOI . ADS .

    Article  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. DOI . ADS .

    Article  Google Scholar 

  • Zhao, X., Dryer, M.: 2014, Current status of CME/shock arrival time prediction. Space Weather 12, 448. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. 107, 1223. DOI . ADS .

    Article  Google Scholar 

  • Zheng, Y., Macneice, P., Odstrčil, D., Mays, M.L., Rastaetter, L., Pulkkinen, A., Taktakishvili, A., Hesse, M., Masha Kuznetsova, M., Lee, H., Chulaki, A.: 2013, Forecasting propagation and evolution of CMEs in an operational setting: What has been learned. Space Weather 11, 557. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was carried out as a part of NASA’s Game Changing Development Program Advanced Radiation Protection Integrated Solar Energetic Proton (ISEP) project. L.K. Jian acknowledges the support of NSF grants AGS 1242798 and 1321493. M.L. Mays thanks T. Nieves-Chinchilla and B.J. Thompson for useful discussions. We gratefully acknowledge the participants of the CME Arrival Time Scoreboard ( kauai.ccmc.gsfc.nasa.gov/CMEscoreboard ). The ACE and Wind solar-wind plasma and magnetic-field data were obtained at NASA’s CDAWeb ( cdaweb.gsfc.nasa.gov ). OMNI data were obtained from NASA’s COHOWeb ( omniweb.gsfc.nasa.gov/coho ). The Dst geomagnetic index was obtained from the World Data Center for Geomagnetism in Kyoto, Japan. Estimated real-time planetary K P indices are from NOAA and the NGDC, and final definitive K P indices are from the Helmholtz Center Potsdam GFZ German Research Centre for Geosciences. The SOHO/LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a mission of international cooperation between the European Space Agency and NASA. The STEREO/SECCHI data are produced by an international consortium of the NRL, LMSAL and NASA GSFC (USA), RAL and University of Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA and IAS (France). Some figure colors are based on ColorBrewer.org .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Mays.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mays, M.L., Taktakishvili, A., Pulkkinen, A. et al. Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model. Sol Phys 290, 1775–1814 (2015). https://doi.org/10.1007/s11207-015-0692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0692-1

Keywords

Navigation