Skip to main content
Log in

Source of a Prominent Poleward Surge During Solar Cycle 24

  • Probing the Sun: Inside and Out
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

As an observational case study, we consider the origin of a prominent poleward surge of leading polarity, visible in the magnetic butterfly diagram during Solar Cycle 24. A new technique is developed for assimilating individual regions of strong magnetic flux into a surface-flux transport model. By isolating the contribution of each of these regions, the model shows the surge to originate primarily in a single high-latitude activity group consisting of a bipolar active region present in Carrington Rotations 2104 – 05 (November 2010 – January 2011) and a multipolar active region in Rotations 2107 – 08 (February – April 2011). This group had a strong axial dipole moment opposed to Joy’s law. On the other hand, the modelling suggests that the transient influence of this group on the butterfly diagram will not be matched by a large long-term contribution to the polar field because it is located at high latitude. This is in accordance with previous flux-transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: Maksimovic, M., et al. (eds.) Twelfth International Solar Wind Conference, CP, 1216, AIP, Melville, 343. DOI . ADS .

    Google Scholar 

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI . ADS .

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M.: 2010, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488. DOI . ADS .

    Article  ADS  Google Scholar 

  • Baumann, I., Schmitt, D., Schüssler, M.: 2006, A necessary extension of the surface flux transport model. Astron. Astrophys. 446, 307. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E.: 2003, Impulses of activity and the solar cycle. Solar Phys. 216, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Dasi-Espuig, M., Jiang, J., Işık, E., Schmitt, D., Schüssler, M.: 2013, Limits to solar cycle predictability: Cross-equatorial flux plumes. Astron. Astrophys. 557, A141. DOI . ADS .

    Article  ADS  Google Scholar 

  • De Rosa, M.L., Schrijver, C.J.: 2006, Consequences of large-scale flows around active regions on the dispersal of magnetic field across the solar surface. In: Thompson, M. (ed.) Proc. SOHO 18/GONG 2006/HELAS I (SP-264), ESA, Noordwijk. ADS .

    Google Scholar 

  • DeVore, C.R., 1986, Theory and simulation of the evolution of the large-scale solar magnetic field, PhD thesis, Princeton Univ.

  • DeVore, C.R., Boris, J.P., Sheeley, N.R. Jr.: 1984, The concentration of the large-scale solar magnetic field by a meridional surface flow. Solar Phys. 92, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Durrant, C.J., Turner, J.P.R., Wilson, P.R.: 2004, The mechanism involved in the reversals of the Sun’s polar magnetic fields. Solar Phys. 222, 345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gaizauskas, V.: 2008, Development of flux imbalances in solar activity nests and the evolution of filament channels. Astrophys. J. 686, 1432. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gaizauskas, V., Harvey, K.L., Harvey, J.W., Zwaan, C.: 1983, Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys. J. 265, 1056. DOI . ADS .

    Article  ADS  Google Scholar 

  • Giovanelli, R. G.: 1985, The sunspot cycle and solar magnetic fields. I – The mechanism as inferred from observation. II – The interaction of flux tubes with the convection zone. Aust. J. Phys. 38, 1045. ADS .

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1938, On the nature of solar activity. Izv. Gl. Astron. Obs. Pulkove 16, 36. ADS .

    ADS  Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of Sun-spots. Astrophys. J. 49, 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R., Labonte, B.J.: 1981, Surface magnetic fields during the solar activity cycle. Solar Phys. 74, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2014, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R., Schmitt, D., Schüssler, M.: 2010a, Modeling the Sun’s open magnetic flux and the heliospheric current sheet. Astrophys. J. 709, 301. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010b, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1964, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Lockwood, M.: 2002, The evolution of the Sun’s open magnetic flux – II. Full solar cycle simulations. Solar Phys. 209, 287. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Yeates, A.R.: 2012, The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev. Solar Phys. 9, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Priest, E.R., Lockwood, M.: 2002, The evolution of the Sun’s open magnetic flux – I. A single bipole. Solar Phys. 207, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2012, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Solar Phys. 281, 577. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Petrovay, K., Schatten, K.: 2014, Solar polar fields and the 22-year activity cycle: Observations and models. Space Sci. Rev. 186, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L., Title, A.M.: 2002, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577, 1006. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L., Title, A.M.: 2003, Asterospheric magnetic fields and winds of cool stars. Astrophys. J. 590, 493. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schüssler, M., Baumann, I.: 2006, Modeling the Sun’s open magnetic flux. Astron. Astrophys. 459, 945. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr.: 2005, Surface evolution of the Sun’s magnetic field: A historical review of the flux-transport mechanism. Living Rev. Solar Phys. 2, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., DeVore, C.R., Boris, J.P.: 1985, Simulations of the mean solar magnetic field during sunspot cycle 21. Solar Phys. 98, 219. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ulrich, R.K., Tran, T.: 2013, The global solar magnetic field – Identification of traveling, long-lived ripples. Astrophys. J. 768, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: 2014, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Mackay, D.H.: 2007, Model for the coupled evolution of subsurface and coronal magnetic fields in solar active regions. Astrophys. J. 659, 1713. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the Sun’s dipole moment – New twists to the Babcock–Leighton model. Astrophys. J. 375, 761. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2002, Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys. J. 577, L53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989a, Evolution of the Sun’s polar fields during sunspot cycle 21 – Poleward surges and long-term behavior. Astrophys. J. 347, 529. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989b, Magnetic flux transport on the Sun. Science 245, 712. DOI . ADS .

    Article  ADS  Google Scholar 

  • Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys. 195, 247. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: Continuous non-potential simulations. Solar Phys. 289, 631. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Muñoz-Jaramillo, A.: 2013, Kinematic active region formation in a three-dimensional solar dynamo model. Mon. Not. Roy. Astron. Soc. 436, 3366. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2007, Modelling the global solar corona: Filament chirality observations and surface simulations. Solar Phys. 245, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zolotova, N.V., Ponyavin, D.I.: 2012, Reconstruction of magnetic field surges to the poles from sunspot impulses. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing quiet times in the Sun and Stars, IAU Symp, 286, Cambridge University Press, Cambridge, 88, DOI . ADS .

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Leverhulme Trust for funding the “Probing the Sun: inside and out” project upon which this research is based. ARY thanks STFC for financial support through consortium grant ST/K001043/1. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 284461 (eHEROES project). LvDG acknowledges the Hungarian government for grant OTKA K 109276. DB and LvDG thanks STFC for support under Consolidated Grant ST/H00260/1. This work utilises data obtained by the Global Oscillation Network Group (GONG) program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. We thank Duncan Mackay for reading an initial draft and the referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Yeates.

Additional information

Probing the Sun: Inside and Out

Guest Editors: D. Baker, L.K. Harra, and R. Howe

Appendix: Assimilation Algorithm

Appendix: Assimilation Algorithm

To assimilate new magnetogram flux, we first process each individual synoptic magnetogram g(θ,ϕ) to determine a list of strong-flux regions, using the following procedure:

  1. i)

    Correct any overall net flux imbalance in g by subtracting an equal amount from each pixel.

  2. ii)

    Take the absolute value to obtain a new map f(θ,ϕ)=|g(θ,ϕ)|.

  3. iii)

    Smooth f with a Gaussian filter (standard deviation σ) to obtain \(\bar{f}\). The purpose of this step is primarily to merge the positive and negative polarities of individual bipolar active regions.

  4. iv)

    Identify connected regions [R i ] where \(\bar{f}>B_{0}\). These are the new regions that will be inserted into the flux-transport model. (Note that these regions need not be simply connected and could have holes.)

Next, each strong flux region [R i ] is incorporated into the flux-transport model as follows:

  1. i)

    Determine the centroid of R i in Carrington longitude and choose to insert it on the corresponding day when this longitude crosses the central meridian.

  2. ii)

    Determine the net flux imbalance \(\Phi_{i}=\int_{R_{i}}B_{r}\,\mathrm{d}\Omega\), where B r (θ,ϕ) is the pre-existing simulated radial field.

  3. iii)

    Modify the observed field [\(g|_{R_{i}}\)] so that the net flux in R i matches Φ i , by subtracting an equal amount from each pixel. This prevents us from introducing a flux imbalance in the insertion step.

  4. iv)

    Replace the simulated B r in R i with the observed field [\(g|_{R_{i}}\)].

  5. v)

    Recompute the global vector potential [A θ ,A ϕ ] to match the modified B r .

The process is designed to be fully automated, once the controlling parameters σ and B 0 have been determined. For the GONG synoptic maps, we have found σ=3 pixels and B 0=15 G to work well. The smoothing width σ should be large enough to merge the two opposite polarities of activity complexes while not merging too many neighbouring complexes. The threshold B 0 needs to be large enough to include all significant new flux but be above the “noise” level of ephemeral regions (in the smoothed magnetogram), so that only flux at active latitudes is assimilated.

To preserve the field distribution, the net flux in each identified region R i should be close to that existing beforehand in the simulation. For example, a region emerging in an empty area of the solar surface should have zero net flux. Otherwise, the flux correction will noticeably distort the observed field. This practical consideration requires σ to be sufficiently large and B 0 to be sufficiently small.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeates, A.R., Baker, D. & van Driel-Gesztelyi, L. Source of a Prominent Poleward Surge During Solar Cycle 24. Sol Phys 290, 3189–3201 (2015). https://doi.org/10.1007/s11207-015-0660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0660-9

Keywords

Navigation