Skip to main content
Log in

Three-Dimensional Evolution of Erupted Flux Ropes from the Sun (2 – 20 R ) to 1 AU

  • Flux-Rope Structure of Coronal Mass Ejections
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Studying the evolution of magnetic clouds entrained in coronal mass ejections using in-situ data is a difficult task, since only a limited number of observational points is available at large heliocentric distances. Remote sensing observations can, however, provide important information for events close to the Sun. In this work we estimate the flux rope orientation first in the close vicinity of the Sun (2 – 20 R ) using forward modeling of STEREO/SECCHI and SOHO/LASCO coronagraph images of coronal mass ejections and then in situ using Grad–Shafranov reconstruction of the magnetic cloud. Thus, we are able to measure changes in the orientation of the erupted flux ropes as they propagate from the Sun to 1 AU. We present both techniques and use them to study 15 magnetic clouds observed during the minimum following Solar Cycle 23 and the rise of Solar Cycle 24. This is the first multievent study to compare the three-dimensional parameters of CMEs from imaging and in-situ reconstructions. The results of our analysis confirm earlier studies showing that the flux ropes tend to deflect towards the solar equatorial plane. We also find evidence of rotation on their travel from the Sun to 1 AU. In contrast to past studies, our method allows one to deduce the evolution of the three-dimensional orientation of individual flux ropes rather than on a statistical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434 .

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V., Tripathi, D.: 2006, Properties of structured coronal mass ejections in solar cycle 23. Adv. Space Res. 38, 461 – 465. doi: 10.1016/j.asr.2005.01.095 .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Priest, E.R., Lee, L.C., Russel, C.T. (eds.) Geophys. Monogr. Ser. 58, 343 – 364.

    Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4 .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. 107, 1142. doi: 10.1029/2001JA000293 .

    Article  Google Scholar 

  • Huttunen, K.E.J., Koskinen, H.E.J., Schwenn, R.: 2002, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 107, 1121 – 1128. doi: 10.1029/2001JA900171 .

    Article  Google Scholar 

  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad–Shafranov reconstruction of magnetic clouds: overview and improvements. Solar Phys. 273, 205 – 219. doi: 10.1007/s11207-011-9845-z .

    Article  ADS  Google Scholar 

  • Jian, L., Russel, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. doi: 10.1007/s11207-006-0133-2 .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., Cyr, O.C.S., Guhathakurta, M., Crhistian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0 .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A.B., Simunac, K.: 2009, STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys. 27, 4491 – 4503. doi: 10.5194/angeo-27-4491-2009 .

    Article  ADS  Google Scholar 

  • Krall, J.: 2007, Are all coronal mass ejections hollow flux ropes? Astrophys. J. 657, 559 – 566. doi: 10.1086/510191 .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., Li, Y., Luhmann, J.G., DeVore, C.R.: 2009, Rotation of coronal mass ejections during eruption. Astrophys. J. 697, 1918 – 1927. doi: 10.1088/0004-637X/697/2/1918 .

    Article  ADS  Google Scholar 

  • MacQueen, R.M., Hundhausen, A.J., Conover, C.W.: 1986, The propagation of coronal mass ejection transients. J. Geophys. Res. 91, 31 – 38. doi: 10.1029/JA091iA01p00031 .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Colaninno, R., Vourlidas, A., Szabo, A., Lepping, R.P., Boardsen, S.A., Anderson, B.J., Korth, H.: 2012, Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints. J. Geoph. Res. 117, A017243. doi: 10.1029/2011JA017243 .

    Article  Google Scholar 

  • Plunkett, S.P., Thompson, B.J., Cyr, O.C.S., Howard, R.A.: 2001, Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 63, 389 – 402. doi: 10.1016/S1364-6826(00)00166-8 .

    Article  ADS  Google Scholar 

  • Rodriguez, L., Mierla, M., Zhukov, A.N., West, M., Kilpua, E.: 2011, Linking of remote-sensing and in situ observations of CMEs using STEREO. Solar Phys. 270, 561 – 573. doi: 10.1007/s11207-011-9784-8 .

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. 194, 33. doi: 10.1088/0067-0049/194/2/33 .

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111 – 130. doi: 10.1007/s11207-009-9346-5 .

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449, 791 – 803. doi: 10.1051/0004-6361:20054262 .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043 – 1059. doi: 10.1051/0004-6361:20030692 .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93, 8519 – 8531. doi: 10.1029/JA093iA08p08519 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Colaninno, R., Noeves-Chinchilla, T., Stenborg, G.: 2011, The first observation of a rapidly rotating coronal mass ejection in the middle corona. Astrophys. J. Lett. 733, L23. doi: 10.1088/2041-8205/733/2/L23 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. in this issue. doi: 10.1007/s11207-012-0084-8 .

  • Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., Wang, J.X.: 2002, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. 107, 1340. doi: 10.1029/2002JA009244 .

    Article  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116, A04104. doi: 10.1029/2010JA016101 .

    Article  ADS  Google Scholar 

  • Wang, Y., Shen, C., Wang, S., Ye, P.: 2004, Deflection of coronal mass ejection in the interplanetary medium. Solar Phys. 222, 329 – 343. doi: 10.1023/B:SOLA.0000043576.21942.aa .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V.: 2008, Relationship between EIT post eruption arcades, coronal mass ejections, coronal neutral line and magnetic clouds. Astrophys. J. Lett. 675, L49 – L52. doi: 10.1086/533413 .

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Abramenko, V., Tripathi, D.: 2009, Rotation of white-light coronal mass ejection structures as inferred from LASCO coronagraph. Astrophys. J. 705, 426 – 435. doi: 10.1088/0004-637X/705/1/426 .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996 – 2005. J. Geophys. Res. 112, A10102. doi: 10.1029/2007JA012321 .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31 – 43. doi: 10.1007/s11214-006-9010-4 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of A. Isavnin and E. Kilpua was supported by the Academy of Finland. The work of A. Vourlidas is supported by NASA contract S-136361-Y to the Naval Research Laboratory. LASCO was constructed by a consortium of institutions: NRL (USA), MPI fur Aeronomie (Germany), LAS (France) and University of Birmingham (UK). The SECCHI data are produced by an international consortium of the NRL, LMSAL and NASA GSFC (USA), RAL and University of Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA and IAS (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Isavnin.

Additional information

Flux-Rope Structure of Coronal Mass Ejections

Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isavnin, A., Vourlidas, A. & Kilpua, E.K.J. Three-Dimensional Evolution of Erupted Flux Ropes from the Sun (2 – 20 R ) to 1 AU. Sol Phys 284, 203–215 (2013). https://doi.org/10.1007/s11207-012-0214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0214-3

Keywords

Navigation