Skip to main content

Advertisement

Log in

Outflows at the Edges of an Active Region in a Coronal Hole: A Signature of Active Region Expansion?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Outflows of plasma at the edges of active regions surrounded by quiet Sun are now a common observation with the Hinode satellite. While there is observational evidence to suggest that the outflows are originating in the magnetic field surrounding the active regions, there is no conclusive evidence that reveals how they are driven. Motivated by observations of outflows at the periphery of a mature active region embedded in a coronal hole, we have used a three-dimensional simulation to emulate the active region’s development in order to investigate the origin and driver of these outflows. We find that outflows are accelerated from a site in the coronal hole magnetic field immediately surrounding the active region and are channelled along the coronal hole field as they rise through the atmosphere. The plasma is accelerated simply as a result of the active region expanding horizontally as it develops. Many of the characteristics of the outflows generated in the simulation are consistent with those of observed outflows: velocities up to 45 km s−1, properties akin to the coronal hole, proximity to the active region’s draining loops, expansion with height, and projection over monopolar photospheric magnetic concentrations. Although the horizontal expansion occurs as a consequence of the active region’s development in the simulation, expansion is also a general feature of established active regions. Hence, it is entirely possible and plausible that the expansion acceleration mechanism displayed in the simulation is occurring in active regions on the Sun and, in addition to reconnection, is driving the outflows observed at their edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arber, T.D., Longbottom, A.W., Gerrard, C.L., Milne, A.M.: 2001, J. Comput. Phys. 171, 151.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Astron. Nachr. 328, 773.

    Article  ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009a, Astrophys. J. 705, 926.

    Article  ADS  Google Scholar 

  • Baker, D., Rouillard, A.P., van Driel-Gesztelyi, L., Démoulin, P., Harra, L.K., Lavraud, B., et al.: 2009b, Ann. Geophys. 27, 3883.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Gosling, J.T., Kahler, S.W.: 2002, J. Geophys. Res. 107, 1028.

    Article  Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., et al.: 2007, Solar Phys. 243, 19.

    Article  ADS  Google Scholar 

  • Del Zanna, G.: 2008, Astron. Astrophys. 481, L49.

    Article  ADS  Google Scholar 

  • Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: 2008, Astrophys. J. 686, 1362.

    Article  ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., et al.: 2007, Solar Phys. 243, 63.

    Article  ADS  Google Scholar 

  • Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A.: 2008, Astrophys. J. 678, L67.

    Article  ADS  Google Scholar 

  • Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Astrophys. J. 676, L147.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., et al.: 2007, Solar Phys. 243, 3.

    Article  ADS  Google Scholar 

  • Marsch, E., Tian, H., Sun, J., Curdt, W., Wiegelmann, T.: 2008, Astrophys. J. 685, L1262.

    Article  Google Scholar 

  • Murray, M.J., van Driel-Gesztelyi, L., Baker, D.: 2009, Astron. Astrophys. 494, 329.

    Article  MATH  ADS  Google Scholar 

  • Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V.: 2006, Astron. Astrophys. 460, 909.

    Article  ADS  Google Scholar 

  • Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., et al.: 2007, Science 318, 1585.

    Article  ADS  Google Scholar 

  • Shibata, K., Nitta, N., Strong, K.T., Matsumoto, R., Yokoyama, T., Hirayama, T., Hudson, H., Ogawara, Y.: 1994, Astrophys. J. 431, L51.

    Article  ADS  Google Scholar 

  • Tu, C.Y., Zhou, C., Marsch, E., Xia, L.D., Zhao, L., Wang, J.X., Wilhelm, K.: 2005, Science 308, 519.

    Article  ADS  Google Scholar 

  • Uchida, Y., McAllister, A., Strong, K.T., Ogawara, Y., Shimizu, T., Matsumoto, R., Hudson, H.S.: 1992, Publ. Astron. Soc. Japan 44, 155.

    ADS  Google Scholar 

  • Winebarger, A.R., DeLuca, E.E., Golub, L.: 2001, Astrophys. J. 553, L81.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, M.J., Baker, D., van Driel-Gesztelyi, L. et al. Outflows at the Edges of an Active Region in a Coronal Hole: A Signature of Active Region Expansion?. Sol Phys 261, 253–269 (2010). https://doi.org/10.1007/s11207-009-9484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-009-9484-9

Navigation