Skip to main content
Log in

Geometric orbifolds with torsion free derived subgroup

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

A geometric orbifold of dimension d is the quotient space S = X/K, where (X,G) is a geometry of dimension d and K < G is a co-compact discrete subgroup. In this case {ie38-01} is called the orbifold fundamental group of S. In general, the derived subgroup K’ of K may have elements acting with fixed points; i.e., it may happen that the homology cover MS = X/K’ of S is not a geometric manifold: it may have geometric singular points. We are concerned with the problem of deciding when K′ acts freely on X; i.e., when the homology cover M S is a geometric manifold. In the case d = 2 a complete answer is due to C. Maclachlan. In this paper we provide necessary and sufficient conditions for the derived subgroup S to act freely in the case d = 3 under the assumption that the underlying topological space of the orbifold K is the 3-sphere S 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greendlinger M., “On Dehn’s algorithms for the conjugacy and word problems, with applications,“ Comm. Pure Appl. Math., 13, 641–677 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  2. Schupp P. E., “On Greendlinger’s Lemma,“ Comm. Pure Appl. Math., 23, 233–240 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  3. Fine B., Röhl F., and Rosenberger G., “Two-generator subgroups of certain HNN groups,“ in: Combinatorial Group Theory (College Park, MD, 1988), Amer. Math. Soc., Providence, 1990, pp. 19–23 (Contemp. Math.; 109).

    Google Scholar 

  4. Fine B., Röhl F, and Rosenberger G., “On HNN-groups whose three-generator subgroups are free,“ in: Infinite Groups and Group Rings (Tuscaloosa, AL, 1992). Ser. Algebra, 1, World Sci. Publ., River Edge, 1993, pp. 13–36.

    Google Scholar 

  5. Rosenberger G., “On free subgroups of generalized triangle groups,“ Algebra and Logic, 28, No. 2, 152–161 (1989).

    Article  MathSciNet  Google Scholar 

  6. Olshanskii A. Yu., Geometry of Defining Relations in Groups, Kluwer Acad. Publ., Dordrecht (1991).

    Google Scholar 

  7. Geometry II. Encyclopedia of Mathematical Sciences, E. B. Vinberg (Ed.). V. 29, Springer-Verlag, Berlin, Heidelberg,and New York (1993).

    Google Scholar 

  8. Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry,“ Bull. Amer. Math. Soc., 6, 357–381 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. Scott G. P., “The geometry of 3-manifolds,“ Bull. London Math. Soc., 15, 401–487 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  10. Filipkiewicz R. P., Four-Dimensional Geometries, Ph. D. Thesis, University of Warwick (1984).

  11. Jones G. and Singerman D., Complex Functions. An Algebraic and Geometric Viewpoint, Cambridge Univ. Press, Cambridge (1987).

    MATH  Google Scholar 

  12. Maclachlan C., “Abelian groups of automorphisms of compact Riemann surfaces,“ Proc. London Math. Soc., 15, No. 3, 699–712 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  13. Berge C., Graphs and Hypergraphs, Amer. Elsevier Publ. Comp., New York (1976) (North-Holland Math. Library; V. 6).

    MATH  Google Scholar 

  14. Hidalgo R. A. and Rosenberger G., “Torsion free commutator subgroups of generalized Coxeter groups,“ Results Math., 48, No. 1-2, 50–64 (2005).

    MathSciNet  MATH  Google Scholar 

  15. Humbert G., “Sur un complexe remarquable de coniques,“ J. Ecole Polyth., 64, 123–149 (1894).

    Google Scholar 

  16. Hungerford T. W., Algebra, Holt, Rinehart and Winston, New York (1974).

    MATH  Google Scholar 

  17. The GAP group,“ in: GAP-Groups. Algorithms and Programming. Version 4.4; 2006 (www.gap-system.org).

  18. Maclachlan C. and Reid A. W., The Arithmetic of Hyperbolic 3-Manifolds, Springer-Verlag, Berlin, Heidelberg, and New York (2002) (Graduate Texts in Math.; 219).

    Google Scholar 

  19. Carocca A., González V., Hidalgo R. A., and Rodríguez R., “On generalized Humbert curves,“ Israel J. Math., 64, No. 2, 165–192 (2008).

    Article  Google Scholar 

  20. González-Diez G., Hidalgo R. A., and Leyton M., “Generalized Fermat curves,“ J. Algebra, 321, No. 6, 1643–1660 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. Haefliger A. and Quach N. D., “Une presentation de groupe fundamental d’une orbifold,“ Asterisque, 116, 98–107 (1984).

    Google Scholar 

  22. Weeks J., “SnapPea: a computer program for creating and studying hyperbolic 3-manifolds,“ Freely available from http://geometrygames.org/SnapPea

  23. Mednykh A., “Three-dimensional hyperelliptic manifolds,“ Ann. Global Anal. Geom., 8, No. 1, 13–19 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  24. Vesnin A. Yu. and Mednykh A. D., “Three-dimensional hyperelliptic manifolds and Hamiltonian graphs,“ Siberian Math. J., 40, No. 4, 873–886 (1999).

    Article  MathSciNet  Google Scholar 

  25. Dunbar W. D., “Geometric orbifolds,“ Rev. Mat. Univ. Complut. Madrid, 1, 67–99 (1988).

    MathSciNet  MATH  Google Scholar 

  26. Hodgson C., “Orb. A computer program for finding hyperbolic structures on 3-orbifolds and 3-manifolds,“ Freely available from http://www.ms.unimelb.edu.au/ cdh/comp.html

  27. Boileau M., Maillot S., and Porti J., Three-Dimensional Orbifolds and Their Geometric Structures. Panoramas et Synthèses 15, Soc. Math. France, Paris (2003).

    Google Scholar 

  28. Helling H., Kim A. C., and Mennicke J. L., “Some honey-combs in hyperbolic 3-space,“ Comm. Algebra, 23, No. 14, 5169–5206 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  29. Mednykh A. and Vesnin A. Yu., “Covering properties of small volume hyperbolic 3-manifolds,“ J. Knot Theory Ramifications, 7, No. 3, 381–392 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  30. Mednykh A. and Vesnin A. Yu., “Visualization of the isometry group action on the Fomenko-Matveev-Weeks manifold,“ J. Lie Theory, 8, No. 1, 51–66 (1998).

    MathSciNet  MATH  Google Scholar 

  31. Chinburg T., Friedman E., Jones K., and Reid A. W., “The arithmetic hyperbolic 3-manifold of smallest volume,“ Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30, No. 1, 1–40 (2001).

    MathSciNet  MATH  Google Scholar 

  32. Vesnin A.Yu., “On hyperbolic p-orbifolds with arbitrary many singular components,“ Rend. Ist. Mat. Univ. Trieste, 39, 375–386 (2007).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Antonio Hidalgo.

Additional information

Original Russian Text Copyright © 2010 Hidalgo R. A. and Mednykh A. D.

The authors were partially supported by Fondecyt (Grants 7050189, 1060378, and 1070271), the UTFSM 12.08.01, and the Russian Foundation for Basic Research (Grant 09-01-00255).

Valparaiso; Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 51, No. 1, pp. 48–61, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, R.A., Mednykh, A.D. Geometric orbifolds with torsion free derived subgroup. Sib Math J 51, 38–47 (2010). https://doi.org/10.1007/s11202-010-0005-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-010-0005-8

Keywords

Navigation