Skip to main content
Log in

Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

This paper presents extensions of some nonexistence results for elliptic systems with dynamical boundary conditions involving the time-derivatives of integer orders to the case of noninteger order. In particular, we consider a system of Poisson’s equations with time-fractional derivatives of order less than one in the boundary conditions and specify the thresholds of the nonlinearities which lead to the absence of global solutions. The fractional derivatives here are meant in the Riemann-Liouville sense (or in the Caputo sense). We also present necessary conditions for the existence of local solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Liné aires, Dunod-Gautiers Villars, Paris (1969).

    Google Scholar 

  2. Hintermann T., “Evolution equations with dynamic boundary conditions,” Proc. Roy. Soc. Edinburgh Sect. A, 113, No. 1/2, 43–60 (1989).

    MathSciNet  Google Scholar 

  3. Escher J., “Quasilinear parabolic systems with dynamical boundary conditions,” Comm. Partial Differential Equations, 18, No. 7/8, 1309–1364 (1993).

    MATH  MathSciNet  Google Scholar 

  4. Escher J., “Nonlinear elliptic systems with dynamical boundary conditions,” Math. Z., Bd 210, 413–439 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  5. Kirane M., “Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic types,” Hokkaido Math. J., 21, No. 2, 221–229 (1992).

    MATH  MathSciNet  Google Scholar 

  6. Amann H. and Fila M., “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition,” Acta Math. Univ. Comenian., 66, No. 2, 321–328 (1997).

    MATH  MathSciNet  Google Scholar 

  7. Kirane M., Nabana E., and Pokhozhaev S. I., “Nonexistence of global solutions to an elliptic equation with a dynamical boundary condition,” Bol. Soc. Parana. Mat. (3), 22, No. 2, 9–16 (2004).

    MATH  MathSciNet  Google Scholar 

  8. Kirane M., Nabana E., and Pokhozhaev S. I., “The absence of solutions of elliptic systems with dynamic boundary conditions,” Differential Equations, 38, No. 6, 808–815 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. Carslaw H. S. and Jaeger J. C., Conductor of Heat in Solids, Oxford Univ. Press, Oxford (1960).

    Google Scholar 

  10. Groger K., “Initial boundary value problems from semiconductor device theory,” Z. Angew. Math. Mech., 67, 345–355 (1987).

    Article  MathSciNet  Google Scholar 

  11. Igbida N. and Kirane M., “A degenerate di.usion problem with dynamical boundary conditions, ” Math. Ann., 323, No. 2, 377–396 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  12. Bejenaru I., Diaz J. I., and Vrabie I. I., “An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions,” Electron. J. Differential Equations, No. 50, 16–19 (2001).

  13. Grobbelaar-Van Dalsen M. and Sauer N., “Solutions in Lebesgue spaces of the Navier-Stokes equations with dynamic boundary conditions,” Proc. Roy. Soc. Edinburgh Sect. A, 123, No. 4, 745–761 (1993).

    MATH  MathSciNet  Google Scholar 

  14. Langer R. E., “A problem in diffusion or in the flow of heat for a solid in contact with a fluid, ” Tôhoku Math. J., 35, 260–275 (1932).

    MATH  Google Scholar 

  15. Popescu L., “Parabolic large diffusion equations with dynamical boundary conditions,” An. Univ. Craiova Ser. Mat. Inform., 28, 173–182 (2001).

    MATH  MathSciNet  Google Scholar 

  16. Popescu L., “Parabolic large diffusion equations with dynamical boundary conditions. Existence results,” Math. Rep. (Bucur.), 4, 401–413 (2003).

    Google Scholar 

  17. Sun N.-Z., Mathematical Modelling of Groundwater Pollution, Springer-Verlag, New York (1996).

    Google Scholar 

  18. Vulkov L. G., “Applications of Steklov-type eigenvalue problems to convergence of difference schemes for parabolic and hyperbolic equations with dynamical boundary conditions,” in: Numerical Analysis and Its Applications (Rousse, 1996), pp. 557–564. Lecture Notes in Comput. Sci., 1196 (Springer, Berlin, 1997).

    Google Scholar 

  19. Koleva M. N. and Vulkov L. G., “On the blow up of finite difference solutions to the heat-diffusion equation with semilinear dynamical boundary conditions,” Appl. Math. Comput., 161, No. 1, 69–71 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  20. Zlateva K., “Method of lines for parabolic equations with dynamical boundary conditions,” Math. Balkanica, 14, No. 3/4, 275–290 (2000).

    MATH  MathSciNet  Google Scholar 

  21. Ahmed N. U. and Kerbal S., “Necessary conditions of optimality for systems governed by B-evolutions,” in: Ladde G. S. (ed.) et al., Dynamic Systems and Applications. Vol. 2. Proceedings of the 2nd International Conference (Atlanta, GA, USA, May 24–27, 1995), Dynamic Publishers, Atlanta, GA, 1996, pp. 293–300.

    Google Scholar 

  22. Aiki T., “Multi-dimensional Stefan problems with dynamic boundary conditions,” Appl. Anal., 56, No. 1/2, 71–94 (1995).

    MATH  MathSciNet  Google Scholar 

  23. Andreucci D. and Gianni R., “Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions,” Adv. Differential Equations, 1, No. 5, 729–752 (1996).

    MATH  MathSciNet  Google Scholar 

  24. Arrieta J. M., Quittner P., and Rodriguez-Bernal A., “Parabolic problems with nonlinear dynamical boundary conditions and singular initial data,” Differential Integral Equations, 14, No. 12, 1487–1510 (2001).

    MATH  MathSciNet  Google Scholar 

  25. Von Below J. and De Coster C., “A qualitative theory for parabolic problems under dynamical boundary conditions,” J. Ineq. Appl., 5, No. 5, 467–486 (2000).

    Article  MATH  Google Scholar 

  26. Fila M. and Quittner P., “Global solutions of the Laplace equation with a nonlinear dynamical boundary condition,” Math. Methods in Appl. Sci., 20, 1325–1333 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  27. Friedman A. and Shinbrot M., “The initial value problem for the linearized equations of water waves,” J. Math. Mech., 17, 107–180 (1968).

    MathSciNet  Google Scholar 

  28. Kacur J., “Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions,” Math. Slovaca, 30, 213–237 (1980).

    MATH  MathSciNet  Google Scholar 

  29. Koleva M. N., “On the computation of blow-up solutions of parabolic equation with semilinear dynamical boundary conditions,” Proc. Math. Inform., 39, No., 122–126 (2003).

    Google Scholar 

  30. Korpusov M. O. and Sveshnikov A. G., “Existence of a solution to the Laplace equation under a nonlinear dynamic boundary condition,” Comput. Math. Math. Physics, 43, No. 1, 92–107 (2003).

    MathSciNet  Google Scholar 

  31. Samko S. G., Kilbas A. A., and Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2007 Kirane M. and Tatar N.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 48, No. 3, pp. 593–605, May–June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirane, M., Tatar, NE. Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions. Sib Math J 48, 477–488 (2007). https://doi.org/10.1007/s11202-007-0050-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-007-0050-0

Keywords

Navigation