Skip to main content

Advertisement

Log in

Prediction of porosity in crystalline rocks using artificial neural networks: An example from the Chinese Continental Scientific Drilling Main hole

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Porosity plays an important part of understanding permeability and fluid flow within the continental, crystalline rocks. Geophysical well logs are presently the most consistent means of providing continuous information for porosity estimation. However, it is difficult to interpret geophysical well logs data in crystalline rocks due to their complex geological features and the difficulty in understanding and using the complex and intensive information content in these data. Motived by the successful prediction abilities of artificial neural networks (ANN) to solve different problems in geophysics, this study explore the applicability of using ANNs to predict porosity in continental, crystalline rocks. This ANN technique is calibrated on Chinese Continental Scientific Drilling Main Hole (CCSD-MH) data, which provides core porosity data combined with four geophysical well logs (density, neutron porosity, sonic and resistivity). The data from CCSD-MH is utilized to train feed-forward backpropagation (FFBP) neural network and radial basis function (RBF) neural network to derive a relationship between geophysical well logs and porosity, and hence predict porosity accurately. The findings demonstrate that ANNs provide better performances with sets of three geophysical well logs (density, sonic and resistivity) than regression technique. Comparison of FFBP to RBF showed that RBF reveals better stability and more accurate performances than FFBP. Based on the success achieved in this study, this intelligence artificial technique can be a very advantageous tool in facilitating the task of geophysicists in the framework of research drillings in continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken L.S. and West S.G., 1991. Multiple Regression: Testing and Interpreting Interactions. Sage Publ. Inc., Thousand Oaks, CA.

    Google Scholar 

  • Anderson T.W., 1984. An Introduction to Multivariate Statistical Analysis. 2nd Edition. John Wiley&Sons, New York.

    Google Scholar 

  • Anderson R.N., Alt J.C., Malpas J., Lovell M.A., Harvey P.K. and Pratson E.L., 1990. Geochemical well logging in basalts: The palisade sill and the oceanic crust of hole 504B. J. Geophys Res., 90, 9265–9292.

    Article  Google Scholar 

  • Baddari K., Aifa T., Djarfour N. and Ferahtia J., 2009. Application of a radial basis function artificial neural network to seismic data inversion. Comput. Geosci., 35, 2338–2344.

    Article  Google Scholar 

  • Baldwin J.L., Bateman A.R.M. and Wheatley C.L., 1990. Application of neural networks to the problem of mineral identification from well-logs. The Log Analyst, 3, 279–293.

    Google Scholar 

  • Bartetzko A., Delius H. and Pechnig R., 2005. Effect of compositional and structural variations on log responses of igneous and metamorphic rocks. I: mafic rocks. In: Harvey P.K., Brewer T.S., Pezard P.A. and Petrov V.A (Eds), Petrophysical Properties of Crystalline Rocks. Geol. Soc. London Spec. Publ., 240, 255–278.

    Google Scholar 

  • Benaouda D., Wadge G., Whitmarsh R.B., Rothwell R.G. and MacLeod C., 1999. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program. Geophys. J. Int., 136, 477–491.

    Article  Google Scholar 

  • Benoudjit N. and Verleysen M., 2003, On the kernel widths in radial-basis function networks. Neural Process. Lett., 18, 139–154.

    Article  Google Scholar 

  • Bhatt A., 2002. Reservoir Properties from Well Logs Using Neural Networks. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway.

    Google Scholar 

  • Bhatt A. and Helle H.B., 2002. Committee neural networks for porosity and permeability prediction from well logs. Geophys. Prospect., 50, 645–660.

    Article  Google Scholar 

  • Bishop C., 1995. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Celikoglu H.B., 2006. Application of radial basis function and generalized regression neural networks in non-linear function specification for travel mode choice modelling. Math. Comput. Model., 44, 640–658.

    Article  Google Scholar 

  • Chang H.C., Merkel Kopaska D.C., Chen H.C. and Durrans S.R., 2000. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system. Comput. Geosci., 26, 591–601.

    Article  Google Scholar 

  • Dreiseitl S. and Ohno-Machado L., 2002. Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform., 35, 352–359.

    Article  Google Scholar 

  • Good P.I., 2006. Resampling Methods. 3rd Edition. Birkhauser, Boston, PA.

    Google Scholar 

  • Hagan M.T. and Menhaj M.B., 1994. Training feedforward techniques with the Marquardt algorithm. IEEE Trans. Neural Netw., 5, 989–993.

    Article  Google Scholar 

  • Harvey P.K., Brewer T.S., Pezard P.A. and Petrov V.A. (Eds), 2005. Petrophysical Properties of Crystalline Rocks. Geol. Soc. London Spec. Publ., 240.

    Google Scholar 

  • Haykin S., 1998. Neural Networks: A Comprehensive Foundation. Prentice-Hall, New Jersey.

    Google Scholar 

  • Helle H.B., Bhatt A. and Ursin B., 2001. Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophys. Prospect., 49, 431–444.

    Article  Google Scholar 

  • Hornik K., Stinchcombe M.B. and White H., 1989. Multilayer feed-forward networks are universal approximators. Neural Netw., 2, 359–366.

    Article  Google Scholar 

  • Ji S.C. and Xu Z.Q., 2009. Drilling deep into the ultrahigh pressure (UHP) metamorphic terrane. Tectonophysics, 475, 201–203.

    Article  Google Scholar 

  • Ji S.C., Wang Q., Marcotte D., Salisbury M.H. and Xu Z.Q., 2007. P-wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. J. Geophys. Res., 112, B09204, DOI: 10.1029/2006JB004867.

    Google Scholar 

  • Kern H., Jin Z.M., Shan Gao S., Popp T. and Xu Z., 2002. Physical properties of ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern central China: implications for the seismic structure at the Donghai (CCSD) drilling site.Tectonophysics, 354, 315–330.

    Article  Google Scholar 

  • Levenberg K., 1944. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2, 164–168.

    Google Scholar 

  • Liu J., Wu S. and Zidek J.V., 1997. On segmented multivariate regression. Stat. Sin., 7, 497–525.

    Google Scholar 

  • Liu F.L., Xue H.M., Xu Z.Q., Liang F.H. and Gerdes A., 2006. SHRIMP U-Pb zircon dating from eclogite lens in marble, Shuanghe area of Dabie UHP terrane: restriction on prograde, UHP and retrograde metamorphic ages. Acta Petrol. Sinica, 22, 1761–1778.

    Google Scholar 

  • Liu Q., Zeng Q., Zheng J., Yang T., Qiu N., Liu Z., Luo Y. and Jin Z., 2010. Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh-pressure metamorphic belt, eastern China. J. Geophys. Res, 115, B06104, DOI: 10.1029/2009JB000814.

    Google Scholar 

  • Lopez G., Batlles F.J. and Tovar-Pescador J., 2005. Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy, 30, 1675–1684.

    Article  Google Scholar 

  • Luo M. and Pan H.P, 2010. Well logging responses of UHP metamorphic rocks from CCSD Main Hole in Sulu Terrane, Eastern Central China. J. Earth Sci., 21, 347–357, DOI: 10.1007/s12583-010-0098-9.

    Article  Google Scholar 

  • Luo M. and Pan H.P., 2011. Resistivity logs of the Chinese Continental Scientific Drilling Main Hole: implication for the crustal electrical structure of Dabie-Sulu Terrane, Central-Eastern China. J. Earth Sci., 22, 292–298, DOI: 10.1007/s12583-011-0182-9.

    Article  Google Scholar 

  • Luthi S.M. and Bryant I.D., 1997. Well-log correlation using a back-propagation neural network. Math. Geol., 29, 413–425.

    Article  Google Scholar 

  • Maiti S., Tiwari R.K. and Kumpel H.J., 2007. Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys. J. Int., 169, 733–746.

    Article  Google Scholar 

  • Maiti S. and Tiwari R.K., 2009. A hybrid Monte Carlo method based artificial neural networks approach for rock boundaries identification: a case study from KTB Borehole. Pure Appl. Geophys., 166, 2059–2090, DOI: 10.1007/s00024-009-0533-y.

    Article  Google Scholar 

  • Maiti S. and Tiwari R.K., 2010. Neural network modeling and an uncertainty analysis in Bayesian framework:A case study from the KTB borehole site. J. Geophys. Res., 115, B10208, DOI: 10.1029/2010JB000864.

    Article  Google Scholar 

  • May R.J., Maier H.R. and Dandy G.C., 2010. Data splitting for artificial neural networks using SOM- based stratified sampling. Neural Netw., 23, 283–294.

    Article  Google Scholar 

  • Meng X.H., Yu Q.F., Guo Y.Z. and Zhou Y.X., 2007. A preliminary study on paleomagnetism and rock magnetism of Eclogite from the Maobei area. J. China Univ. Geosci., 18, 366–374.

    Article  Google Scholar 

  • Montgomery D.C., Peck E.A., Vining G.G., 2006. Introduction to Linear Regression Analysis, 4th edition, Wiley-Interscience Publication.

    Google Scholar 

  • Moody J. and Darken C.K., 1989. Fast learning in networks of locally-turned processing units. Neural Comput., 1, 281–294.

    Article  Google Scholar 

  • Moos D., 1990. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes. J. Geophys Res., 95(B6), 9305–9325.

    Article  Google Scholar 

  • Moritz E., Bornholdt S., Westphal H. and Meschede M., 2000. Neural network interpretation of LWD data (ODP Leg 170) confirms complete sediment subduction at the Costa Rica convergent margin. Earth Planet. Sci. Lett., 174, 301–331.

    Article  Google Scholar 

  • Muggeo V.M.R., 2003. Estimating regression models with unknown break-points. Statist. Med., 22, 3055–3071, DOI: 10.1002/sim.1545.

    Article  Google Scholar 

  • Niu X.Y., Pan H.P., Wang W.X., Zhu L.F. and Xu D.H., 2004. Geophysical well logging in main hole (0–2000 m) of Chinese Continental Scientific Drilling. Acta Petrol. Sin., 20, 109–118 (in Chinese with English abstract).

    Google Scholar 

  • Ou X.G., Jin Z.M., Xia B., Xu H.J. and Jin S.Y., 2005. Correlations between petrophysical properties of the UHP rocks and its significance on establishing the geophysical interpretation standards for crystalline rocks. Acta Petrol. Sin., 21, 1005–1014.

    Google Scholar 

  • Pan H.P., Luo M. and Zhao Y., 2010. Identification of metamorphic rocks in the CCSD Main Hole. In: Yue S., Wei H.L., Wang L. and Song Y. (Eds), 2010 Sixth International Conference on Natural Computation. IEEE, 4049–4051.

    Chapter  Google Scholar 

  • Pan H.P., Niu, Y.X. and Wang W.X., 2002. CCSD well logging engineering program. J. China Univ. Geosci., 13, 91–94.

    Google Scholar 

  • Pan H.P., Niu Y.X. and Wang W.X., 2005. Radioactive logging application in CCSD Main Hole. Earth Sci.-J. China Univ. Geosci., 30(Suppl.), 49–56 (in Chinese with English Abstract).

    Google Scholar 

  • Park J. and Sandberg I., 1993. Approximation and radial basis function networks. Neural Comput., 5, 305–316.

    Article  Google Scholar 

  • Pechnig R., Delius H. and Bartetzko A., 2005. Effect of compositional variations on log responses of igneous and metamorphic rocks. II: acid and intermediate rocks. In: Harvey P.K., Brewer T.S., Pezard P.A. and Petrov V.A. (Eds), Petrophysical Properties of Crystalline Rocks. Geol. Soc. London Spec. Publ., 240, 279–300.

    Google Scholar 

  • Pechnig R., Heaverkamp S. and Wohlenberg J., 1997. Integrated log interpretation in the German Continental Deep Drilling Program: lithology, porosity, and fracture zones. J. Geophys Res., 102(B8), 8363–18390.

    Google Scholar 

  • Poulton M.M., 2002. Neural networks as an intelligence amplification tool: A review of applications. Geophysics, 67, 979–993.

    Article  Google Scholar 

  • Pratsone E.L., Anderson R.N., Dove R.E., Lyle M., Silver L.T., James E.J. and Chappell B.W., 1992. Geochemical logging in the Cajon Pass drillhole and a new, oxide, igneous rock classification scheme. J. Geophys Res., 97, 5167–5180.

    Article  Google Scholar 

  • Reynaldi A., Lukas S. and Margaretha H., 2012. Backpropagation and Levenberg-Marquardt algorithm for training finite element neural network. In: El-Dabass E., Debono C., Muscat R., Adithia N., Basuki T. and Orsoni A. (Eds), Proceedings, UKSim-AMSS, 6th European Modelling Symposium. IEEE, 89–94, DOI: 10.1109/EMS.2012.56.

    Google Scholar 

  • Seber G.A.F. and Wild C.J., 1989. Nonlinear Regression. John Wiley&Sons, New York.

    Book  Google Scholar 

  • Serra O., 2007. Well Logging and Reservoir Evaluation. Editions Technip, Paris, France.

    Google Scholar 

  • Shao J. and Tu D., 1995. The Jackknife and Bootstrap. Springer-Verlag, New York.

    Book  Google Scholar 

  • Sun S.S., Ji S.C., Wang Q., Salisbury M. and Kern H., 2012. P-wave velocity differences between surface-derived and core samples from the Sulu ultrahigh-pressure terrane: Implications for in situ velocities at great depths. Geology, 40, 651–654, DOI: 10.1130/G33045.

    Article  Google Scholar 

  • Tullborg E.L. and Larson S.A, 2006. Porosity in crystalline rocks — a matter of scale. Eng. Geol., 84, 75–83.

    Article  Google Scholar 

  • Van der Baan M. and Jutten C., 2000. Neural networks in geophysical applications. Geophysics, 65, 1034–1047.

    Google Scholar 

  • Wang Q., Ji S.C., Salisbury M.H., Xia B., Pan M.B. and Xu Z.Q., 2004. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): Implications for seismic properties of subducted slabs and origin of mantle reflections. Tectonophysics, 398, 67–99.

    Article  Google Scholar 

  • White H., 1992 Artificial Neural Networks. Approximation and Learning Theory. Blackwell, Cambridge, MA.

    Google Scholar 

  • Xu P.F., Liu F.T., Wang Q.C., Cong B.L., Chen H. and Sun R.M., 2000. Seismic tomography beneath the Dabie-Sulu collision orogeny — 3D velocity structures of lithosphere. Chin. J. Geophys., 43, 377–385 (in Chinese with English Abstract).

    Google Scholar 

  • Xu S., Okay A.I., Ji S., Sengor A.M.C., Su W., Liu Y. and Jiang L., 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256, 80–82.

    Article  Google Scholar 

  • Xu Z.Q., Yang W.C., Ji S.C., Zhang Z.M., Yang J.S., Wang Q. and Tang Z.M., 2009. Deep root of a continent-continent collision belt: Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure (HP-UHP) metamorphic terrane, China. Tectonophysics, 475, 204–219.

    Article  Google Scholar 

  • Yang W.C., 2009. The crust and upper mantle of the Sulu UHPM belt. Tectonophysics, 475, 226–234.

    Article  Google Scholar 

  • Zimmermann G., Burkhardt H. and Meichert M., 1992. Estimation of porosity in crystalline rock by a multivariate statistical approach. Sci. Drill., 3, 27–37.

    Google Scholar 

  • Zoveidavianpoor M., Samsuri A. and Shadizadeh S.R., 2013. Prediction of compressional wave velocity by an artificial neural network using some conventional well logs in a carbonate reservoir. J. Geophys. Eng., 10, 045014, 1–13, DOI: 10.1088/1742-2132/10/4/045014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konaté, A.A., Pan, H., Khan, N. et al. Prediction of porosity in crystalline rocks using artificial neural networks: An example from the Chinese Continental Scientific Drilling Main hole. Stud Geophys Geod 59, 113–136 (2015). https://doi.org/10.1007/s11200-013-0993-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0993-5

Keywords

Navigation