Skip to main content
Log in

Investigation into regional thermal structure of the Thrace Region, NW Turkey, from aeromagnetic and borehole data

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aeromagnetic values over the study region are relatively uniform except for a few anomalies in the northeastern and southwestern areas. Analyses of aeromagnetic data were performed in NW Turkey, in order to have a look into the subsurface regional thermal structure of the region. For this purpose, power spectra, reduced to pole (RTP), and band-pass filtered anomalies were produced using geophysical techniques. Band-pass filtered data were produced from the RTP aeromagnetic anomalies to isolate near surface and undesired deep effects. Based on the aeromagnetic data interpretation, the thickness of the magnetized crust, named the Curie Point Depth (CPD), in the study area lies between 9.7 and 20.3 km. The CPD estimates in the Thrace region of Turkey indicate two shallow CPD (SCPD1 and SCPD2) zones (the Istranca Massif and the Saros Graben area). The deep CPD are located within the Thrace Basin with sediment thickness of about 9 km. The corresponding heat flow map prepared from the averaged thermal conductivities and thermal gradients from the CPD reveals the existence of one low heat flow zone (75 mW/m2) over the center of Thrace Basin, and two high heat flow zones over the Istranca Masif (100–125 mW/m2) in the northern side and Saros Graben (125–135 mW/m2) areas in the southern side of the Thrace Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adatepe F., Demirel S. and Alpar B., 2002. Tectonic setting of the southern Marmara Sea region based on seismic reflection data and gravity modeling. Mar. Geol., 190, 383–395.

    Article  Google Scholar 

  • Aldanmaz E., Gourgaud A. and Kaymakçı N., 2005. Constraints on the composition and thermal structure of the upper mantle beneath NW Turkey: evidence from mantle xenoliths and alkali primary melts. J. Geodyn., 39, 277–316.

    Article  Google Scholar 

  • Aldanmaz E, Köprübaşı N., Gürer Ö.F., Kaymakçı N. and Gourgaud A. 2006. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos, 86, 50–76.

    Article  Google Scholar 

  • Ateş A., Kayıran T. and Sincer I., 2003. Structural interpretation of the Marmara region, NW Turkey, from aeromagnetic, seismic and gravity data. Tectonophysics, 367, 41–99.

    Article  Google Scholar 

  • Ateş A., Bilim F. and Büyüksaraç A., 2005. Curie point depth investigation of Central Anatolia, Turkey. Pure Appl. Geophys., 162, 357–371.

    Article  Google Scholar 

  • Ateş A. and Bilim A., 2005. Block rotations and Curie Point Depth of the Marmara Sea, NW Turkey inferred from aeromagnetic data. J. Balkan Geophys. Soc., 8, 177–180.

    Google Scholar 

  • Aydın I., Karat H.I. and Koçak A., 2005. Curie point depth map of Turkey. Geophys. J. Int., 162, 633–640.

    Article  Google Scholar 

  • Bayrak M., Gürer A. and Gürer Ö.F., 2004. Electromagnetic imaging of the Thrace Basin and Intra-Pontide Subduction Zone, Northwestern Turkey. Int. Geol. Rev., 46, 64–74.

    Article  Google Scholar 

  • Bayrak M., Gürer A., Gürer Ö.F., Ilkışık O.M. and Başokur A.T., 2006. Mohr-Circle based rotational invariants of a magnetotelluric data set from the Thrace Region of Turkey: geological implications. Turk. J. Earth Sci., 15, 95–110.

    Google Scholar 

  • Bektaş Ö., Ravat D., Büyüksaraç A., Bilim F. and Ateş A., 2007. Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl. Geophys., 164, 975–998.

    Article  Google Scholar 

  • Bhattacharyya B.K. and Leu L.K., 1975. Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics, 40, 993–1013.

    Article  Google Scholar 

  • Bhattacharyya B.K. and Leu L.K., 1977. Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics, 42, 41–50.

    Article  Google Scholar 

  • Bilim F., 2007. Investigations into the tectonic lineaments and thermal structure of Kutahya-Denizli region, western Anatolia, from using aeromagnetic, gravity and seismological data. Phys. Earth Planet. Inter., 165, 135–146.

    Article  Google Scholar 

  • Blakely R.J., 1988. Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. J. Geophys. Res., 93, 11817–11832.

    Article  Google Scholar 

  • Blakely R.J. and Hassanzadeh S., 1981. Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile trench. Geol. Soc. Am. Mem., 154, 667–681.

    Google Scholar 

  • Büyükutku A., 1998. Petroleum geology investigation of the Middle-Upper Eocene aged units (Keşan Group) of the northwest Thrace Basin (Trakya havzası kuzeybatısı Orta üst Eosen birimlerinin petrol jeolojisi açısından incelenmesi). PhD Thesis, Ankara University Science Inst., Ankara, Turkey, 175pp. (in Turkish).

    Google Scholar 

  • Byerly P.E. and Stolt R.H., 1977. An attempt to define the curie point isotherm in northern and central Arizona. Geophysics, 42, 1394–1400.

    Article  Google Scholar 

  • Čermák V. and Hurtig E., 1978. The preliminary heat flow map of Europe and some of its tectonic and geohysical implications. Pure Appl. Geophys., 117, 92–103.

    Article  Google Scholar 

  • Chiozzi P., Matsushima J., Okubo Y., Pasquale V. and Verdoya M., 2005. Curie-point depth from spectral analysis of magnetic data in central-southern Europe. Phys. Earth Planet. Inter., 152, 267–276.

    Article  Google Scholar 

  • Connard G., Couch R. and Gemperle M., 1983. Analysis of aeromagnetic measurements from the Cascade Range in Central Oregon. Geophysics, 48, 376–390.

    Article  Google Scholar 

  • Coşkun B., 2000a. Influence of the Istranca-Rhodope Massifs and strands of the North Anatolian Fault on oil potential of Thrace Basin, NW Turkey. J. Pet. Sci. Eng., 27, 1–25.

    Article  Google Scholar 

  • Coşkun B., 2000b. North Anatolian Fault — Saros Gulf relationships and their relevance to hydrocarbon exploration, northern Aegean Sea, Turkey. Mar. Pet. Geol., 17, 751–772.

    Article  Google Scholar 

  • Dolmaz M.N., Hisarlı Z.M., Ustaömer T. and Orbay N., 2005a. Curie point depths based on spectrum analysis of the aeromagnetic data, West Anatolian Extensional Province, Turkey. Pure Appl. Geophys., 162, 571–590.

    Article  Google Scholar 

  • Dolmaz M.N., Ustaömer T., Hisarlı Z.M. and Orbay N., 2005b. Curie Point Depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planets Space, 57, 373–383.

    Google Scholar 

  • Dolmaz M.N., Elitok Ö. and Kalyoncuoğlu U.Y., 2008. Interpretation of low seismicity in the Eastern Anatolian collisional zone using geophysical (seismicity and aeromagnetic) and geological data. Pure Appl. Geophys., 165, 311–330.

    Article  Google Scholar 

  • Doust H. and Arıkan Y., 1974. The Geology of the Thrace Basin. In: Okay, H. and Dileköz E. (Eds.), Proceedings of the 2nd Petroleum Congress of Turkey. Assoc. Turkish Pet. Geol., Vol.2, Ankara, Turkey, 119–136.

  • Dunlop D. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambidge Univ. Press, Cambridge, U.K.

    Book  Google Scholar 

  • Elitok Ö. and Dolmaz M.N., 2008. Mantle flow-induced crustal thinning in the area between the easternmost part of the Anatolian plate and the Arabian Foreland (E Turkey) deduced from the geological and geophysical data. Gondwana Res., 13, 302–318.

    Article  Google Scholar 

  • Ergün M., Özel E. and Sarı C., 1995. Structure of the Sea of Marmara basin in the North Anatolian Fault Zone. In: Banda E., Torné M. and Talwani M. (Eds.), Rifted Ocean — Continent Boundaries. NATO Science Series C, 463. Springer-Verlag, Berlin, Germany, pp. 309–326.

    Google Scholar 

  • Ergün M. and Özel E., 1995. Structural relationships between the Sea of Marmara basin and the North Anatolian Fault Zone. Terra Nova, 7, 278–288.

    Article  Google Scholar 

  • Etiz A., 2007. Investigation of the Thrace region using aeromagnetic anomaly (Trakya Bölgesinin Havadan Mağnetik Anomalilerinin İncelenmesi). MSc Thesis, Süleyman Demirel University Science Inst., Isparta, Turkey, 79 pp. (in Turkish).

    Google Scholar 

  • Etiz A., Dolmaz M.N., Hisarlı Z.M., Ustaömer T. and Orbay N., 2007. Magnetic sources in sedimentation of Thrace Basin and its around (NW Turkey) and their tectonic implications. Geophys. Res. Abs., 9, EGU2007-A-02163.

    Google Scholar 

  • Fedi M., Quarta T. and De Santis A., 1997. Improvements to the Spector and Grant method of source depth estimation using the power law decay of magnetic field power spectra. Geophysics, 62, 1143–1150.

    Article  Google Scholar 

  • Frost B.R. and Shive P.N., 1986. Magnetic mineralogy of the lower continental crust. J. Geophys. Res., 91, 6513–6521.

    Article  Google Scholar 

  • Görür N. and Okay A.I., 1996. A fore-arc origin for the Thrace Basin, NW Turkey. Geologische Rundschau, 85, 663–668.

    Article  Google Scholar 

  • Gürbüz C., Aktar M., Eyidoğan H., Cisternas A., Haessler H., Barka A., Ergin M., Türkelli N., Polat O., Uçer S.B., Kuleli S., Barış S., Kaypak B., Bekler T., Zor E., Bicmen F. and Yoruk A., 2000. The seismotectonics of the Marmara region (Turkey): results from a microseismic experiment. Tectonophysics, 316, 1–17.

    Article  Google Scholar 

  • Hildenbrand T.G., 1983. FFTFIL: A Filtering Program Based on Two-Dimensional Fourier Analysis. U.S.G.S Open File Report, pp. 83–237.

  • Hisarlı M., 1995. Determination of Curie Point Depths in Edremit-Susurluk Region. Nezihi Canıtez Symposium (Edremit-Susurluk Bölgesinin Curie Nokta derinliklerinin Saptanması. Nezihi Canıtez Sempozyumu). Jeofizik, 9-10, 111–117 (in Turkish).

    Google Scholar 

  • Horasan G., Gulen L., Pınar A., Kalafat D., Ozel N., Kuleli H.S. and Işıkara A.M., 2002. Lithospheric structure of the Marmara and Aegean regions, western Turkey. Bull. Seismol. Soc. Amer., 92, 322–329.

    Article  Google Scholar 

  • Hoşgörmez H., Yalçın M.N., Cramer B., Gerling P. and Mann U., 2005. Molecular and isotopic composition of gas occurrences in the Thrace basin (Turkey): origin of the gases and characteristics of possible source rocks. Chem. Geol., 214, 179–191.

    Article  Google Scholar 

  • Hoşgörmez H. and Yalçın M.N., 2005. Gas-source rock correlation in Thrace Basin, Turkey. Mar. Pet. Geol., 22, 901–916.

    Article  Google Scholar 

  • Huvaz O., 2005. Investigation of the Thermal Gradient History of the Thrace Basin, NW Turkey, by Using a modified Easy%Ro Maturity Model. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 106 pp.

    Google Scholar 

  • Huvaz O., Sarıkaya H. and Nohut O.M., 2005. Nature of a regional dogleg pattern in maturity profiles of the Thrace Basin, Northwestern Turkey: A newly discovered unconformity or a thermal anomaly? AAPG Bull., 89, 1373–1396.

    Article  Google Scholar 

  • Huvaz O., Karahanoğlu N. and Ediger V., 2007. The thermal gradient history of the Thrace Basin, NW Turkey: correlation with basin evolution processes. J. Pet. Geol., 30, 3–24.

    Article  Google Scholar 

  • Jongsma D., 1974. Heat flow in the Aegean Sea. Geophys. J. R. Astr. Soc., 37, 337–346.

    Article  Google Scholar 

  • Keskin C., 1974. The stratigraphy of the Northern Ergene Basin (Ergene Havzası kuzeyinin stratigrafisi). In: Okay H. and Dileköz E. (Eds.), Proceedings of the 2nd Petroleum Congress of Turkey. Assoc. Turkish Pet. Geol., Vol. 2, Ankara, Turkey, 137–163.

  • Ketin I., 1983. General Outlines of the Geology of Turkey (Türkiye Jeolojisine Genel Bir Bakış). Publ. Istanbul Tech. Univ., No. 1259, İstanbul, Turkey, 595 pp. (in Turkish).

  • Li C.F., Chen B. and Zhou Z., 2009. Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Sci. China D-Earth Sci., 52, 984–993.

    Article  Google Scholar 

  • Li C.F., Shi X., Zhou Z., Li J., Geng J. and Chen B., 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys. J. Int., 182, 1229–1247.

    Article  Google Scholar 

  • Maden N., 2010. Curie-point Depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central Turkey). Pure Appl. Geophys., 167, 349–358.

    Article  Google Scholar 

  • Malin S.R.C. and Barraclough D.R., 1981. An algorithm for synthesing the geomagnetic field. Comput. Geosci., 7, 401–405.

    Article  Google Scholar 

  • Maus S., Gordon D. and Fairhead D., 1997. Curie-temperature depth estimation using a self-similar magnetization model. Geophys. J. Int., 129, 163–168.

    Article  Google Scholar 

  • Nagata T., 1961. Rock Magnetism. Maruzen Company Ltd., Tokyo, Japan.

    Google Scholar 

  • Okubo Y., Graf J.R., Hansen R.O., Ogawa K. and Tsu H., 1985. Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics, 53, 481–494.

    Article  Google Scholar 

  • Okubo Y., Tsu H. and Ogawa K., 1989. Estimation of Curie point temperature and geothermal structure of island arc of Japan. Tectonophysics, 159, 279–290.

    Article  Google Scholar 

  • Okubo Y. and Matsunaga T., 1994. Curie point depth in Northeast Japan and its correlation with regional thermal structure and seismicity. J. Geophys. Res., 99(B11), 22363–22371.

    Article  Google Scholar 

  • Okubo Y., Matsushima J. and Correia A., 2003. Magnetic spectral analysis in Portugal and its adjacent seas. Phys. Chem. Earth, 28, 511–519.

    Article  Google Scholar 

  • Perinçek D., 1991. Possible strand of the North Fault in the Thrace Basin, Turkey an in interpretation. Am. Assoc. Pet. Geol. Bull., 75, 241–257.

    Google Scholar 

  • Ravat D., Pignatelli A., Nicolosi I. and Chiappini M., 2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys. J. Int., 169, 421–434.

    Article  Google Scholar 

  • Ross H.E., Blakely R.J. and Zoback M.D., 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71, L51–L59.

    Article  Google Scholar 

  • Saner S., 1985. Sedimentary sequences and tectonic setting of Saros Gulf area northeastern Aegean Sea, Turkey (Saros körfezi dolayının çökelme istifleri ve tektonik yerleşimi: Kuzeydoğu Ege denizi, Türkiye). Türkiye Jeol. Kur. Bült., 28, 1–10 (in Turkish).

    Google Scholar 

  • Shuey R.T., Schellinger D.K., Tripp A.C. and Alley L.B., 1977. Curie depth determination from aeromagnetic spectra. Geophys. J. R. Astr. Soc., 50, 75–101.

    Article  Google Scholar 

  • Siyako M. and Huvaz O., 2007. Eocene stratigraphic evolution of the Thrace Basin, Turkey. Sediment. Geol., 198, 75–91.

    Article  Google Scholar 

  • Smith R.B., Shuey R.T., Freidline R.O., Otis R.M. and Alley L.B., 1974. Yellowstone hot spot: New magnetic and seismic evidence. Geology, 2, 451–455.

    Article  Google Scholar 

  • Smith R.B., Shuey R.T., Felton J.R. and Bailey J.P., 1977. Yellowstone hot spot: Contemporary tectonics and crustal properties from earthquake and magnetic data. J. Geophys. Res., 82, 3665–3676.

    Article  Google Scholar 

  • Spector A. and Grant F.S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

    Article  Google Scholar 

  • Stampolidis A., Kane I., Tsokas G.N. and Tsourlos P., 2005. Curie point depths of Albania inferred from ground total field magnetic data. Surv. Geophys., 26, 461–480.

    Article  Google Scholar 

  • Stampolidis A. and Tsokas G.N., 2002. Curie point depths of Macedonia and Thrace, N. Greece. Pure Appl. Geophys., 159, 2659–2671.

    Article  Google Scholar 

  • Şalk M., Pamukçu O. and Kaftan I., 2005. Determination of the Curie point depth and heat flow from MAGSAT data of Western Anatolia. J. Balkan Geophys. Soc., 8(4), 149–160.

    Google Scholar 

  • Tanaka A., Okubo Y. and Matsubayashi O., 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306, 461–470.

    Article  Google Scholar 

  • Tanaka A. and Ishikawa Y., 2005. Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study. Phys. Earth Planet. Inter., 152, 257–266.

    Article  Google Scholar 

  • Tezcan A.K., 1995. Geothermal explorations and heat flow in Turkey. In: Gupta M.L. and Yamano M. (Eds.), Terrestrial Heat Flow and Geothermal Energy in Asia. Oxford and IBH publishing Co. Pvt. Ltd., New Delhi, India, 23–42.

    Google Scholar 

  • Trifonova P., Zhelev Z., Petrova T. and Bojadgieva K., 2009. Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473, 362–374.

    Article  Google Scholar 

  • Tsokas G.N., Hansen R.O. and Fytikas M., 1998. Curie point depth of island of Crete (Greece). Pure Appl. Geophys., 152, 747–757.

    Article  Google Scholar 

  • Tuncer M.K., Oshiman N., Baris S., Kamaci Z., Kaya M.A., Isikara A.M. and Honkura Y., 1991. Further evidence for anomalous magnetic structure along the active fault in western Turkey. J. Geomagn. Geoelectr., 43, 937–950.

    Article  Google Scholar 

  • Turgut S., Siyako M. and Dilki A., 1983. The geology and the petroleum prospects of the Thrace Basin. Proc. Geol. Congr. Turkey, 4, 35–46.

    Google Scholar 

  • Turgut S., Türkaslan M. and Perinçek D., 1991. Evolution of the Thrace Basin sedimentary basin and its hydrocarbon prospectivity. In: Spencer A.M. (Ed.), Generation, Accumulation and Production of Europe’s Hydrocarbons. Oxford University Press, New York, 415–437.

    Google Scholar 

  • Turgut S. and Eseller G., 2000. Sequence stratigraphy, tectonics and depositional history in eastern Thrace Basin, NW Turkey. Mar. Pet. Geol., 17, 61–100.

    Article  Google Scholar 

  • von Frese R.R.B., Hinze W.J. and Braile L.W., 1982. Regional North American gravity and magnetic anomaly correlations. Geophys. J. R. Astr. Soc., 69, 745–761.

    Article  Google Scholar 

  • Yaltırak C., 2002. Tectonic evolution of the Marmara Sea and its surroundings. Mar. Geol., 190, 493–529.

    Article  Google Scholar 

  • Yaltırak C., Alpar B., Sakınç M. and Yüce H., 2000. Origin of the Strait of Canakkale (Dardanelles): regional tectonics and the Mediterranean Marmara incursion. Mar. Geol., 164, 139–156 with Erratum, 167, 189–190.

    Article  Google Scholar 

  • Yaltırak C. and Alpar B., 2002. Evolution of the middle strand of North Anatolian Fault and shallow seismic investigation of the southeastern Marmara Sea (Gemlik Bay). Mar. Geol., 190, 307–327.

    Article  Google Scholar 

  • Yılmaz Y. and Polat A., 1998. Geology and evolution of the Thrace volcanism, Turkey. Acta Vulcanologica, 10, 293–303.

    Google Scholar 

  • Yu Z., Thomsen R.O. and Lerche I., 1995. Crystalline basement focusing of heat versus fluid flow/compaction effects: a case study of the I-1 well in the Danish North Sea. Petrol. Geosci., 1, 31–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Mümtaz Hisarli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mümtaz Hisarli, Z., Nuri Dolmaz, M., Okyar, M. et al. Investigation into regional thermal structure of the Thrace Region, NW Turkey, from aeromagnetic and borehole data. Stud Geophys Geod 56, 269–291 (2012). https://doi.org/10.1007/s11200-010-9077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-9077-y

Keywords

Navigation