Skip to main content
Log in

Sea level variability at Antalya and Menteş tide gauges in Turkey: atmospheric, steric and land motion contributions

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Sea level trends and interannual variability at Antalya and Menteş tide gauges are investigated during the 1985–2001 period, quantifying the roles of atmospheric, steric and local land motion contributions. Tide gauge sea level measurements, temperature/salinity climatologies and GPS data are used in the analyses and the results are compared with the output of a barotropic model forced by atmospheric pressure and wind. The overall sea level trends at two tide gauges collocated with GPS are in the range of 5.5 to 7.9 mm/yr during the study period, but showing different behaviour in the sub-periods 1985–1993 and 1993–2001 due to variations in the contributing factors both in space and time. After the removal of the atmospheric forcing and steric contribution from sea level records, the resulting trends vary between 1.9 to 4.5 mm/yr in Antalya and −1.2 to −11.6 mm/yr in Menteş depending on the period considered. Vertical land movement estimated from GPS data seems to explain the high positive residual trend in Antalya during the whole period. On the other hand, the source of the highly negative sea level trend of about −14 mm/yr in Menteş during 1985–1993 could not be resolved with the available datasets. Interannual variability of wind and atmospheric pressure appear to dominate the sea level at both tide gauges during the study period. Atmospheric and steric contributions together account for ∼50% of the total sea level variance at interannual time scales. Mass induced sea level variations which were not considered in this study may help to close the sea level trend budgets as well as to better explain the interannual sea level variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z., Boucher C. and Sillard P., 2002. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214.

    Article  Google Scholar 

  • Alvarez-Fanjul E., Pérez B. and Rodríguez I., 1997. A description of the tides in the Eastern North Atlantic. Prog. Oceanogr., 40, 217–244.

    Article  Google Scholar 

  • Blewitt G. and Lavallée D., 2002. Effect of annual signals on geodetic velocity. J. Geophys. Res., 107(B7), 2145.

    Article  Google Scholar 

  • Boehm J., Niell A., Tregoning P. and Schuh H., 2006. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304.

    Article  Google Scholar 

  • Boehm J., Heinkelmann R. and Schuh H., 2007. Short Note: A global model of pressure and temperature for geodetic applications. J. Geodesy, 81, 679–683.

    Article  Google Scholar 

  • Calafat F.M., Marcos M. and Gomis D., 2010. Mass contribution to Mediterranean Sea level variability for the period 1948–2000. Glob. Planet. Change, 73, 193–201.

    Article  Google Scholar 

  • Cazenave A., Cabanes C., Dominh K. and Mangiarotti S., 2001. Recent sea level changes in the Mediterranean Sea revealed by TOPEX/POSEIDON satellite altimetry. Geophys. Res. Lett., 28, 1607–1610.

    Article  Google Scholar 

  • Criado-Aldeanueva F., Del Río Vera J. and García-Lafuente J., 2008. Steric and massinduced Mediterranean sea level trends from 14 years of altimetry data. Glob. Planet. Change, 60, 563–575.

    Article  Google Scholar 

  • Dow J.M., Neilan R.E. and Rizos C., 2009. The international GNSS service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy, 83, 191–198.

    Article  Google Scholar 

  • Fenoglio-Marc L., 2002. Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Phys. Chem. Earth, 27, 1419–1431.

    Article  Google Scholar 

  • Fenoglio-Marc L., Dietz C. and Groten E., 2004. Vertical Land Motion in the Mediterranean Sea from Altimetry and Tide Gauge Stations. Mar. Geod., 27, 683–701.

    Article  Google Scholar 

  • García-Sotillo M., Ratsimandresy A.W., Carretero J.C., Bentamy A., Valero F. and González-Rouco F., 2005. A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis. Clim. Dyn., 25, 219–236.

    Article  Google Scholar 

  • Gomis D., Ruiz S., Sotillo M.G., Alvarez-Fanjul E. and Terradas J., 2008. Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Glob. Planet. Change, 63, 215–229.

    Article  Google Scholar 

  • Guedes Soares C., Carretero Albiach J.C., Weisse R. and Alvarez-Fanjul E., 2002. A 40 years hindcast of wind, sea level and waves in European waters. In: Proceedings of the 21st International Conference on Offshore Mechanics and Artic Engineering, 2. American Society of Mechanical Engineers, New York, OMAE2002-SR28604, ISBN: 0-7918-3612-6, 669–675, DOI: 10.1115/OMAE2002-28604.

    Google Scholar 

  • Herring T.A., King R.W. and Mcclusky S.C., 2006a. GAMIT Reference Manual, GPS Analysis at MIT, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA (http://shadow.eas.gatech.edu/~anewman/classes/MGM/GAMIT/GAMIT_Ref_10.3.pdf).

    Google Scholar 

  • Herring T.A., King R.W. and Mcclusky, S.C., 2006b. GLOBK Reference Manual, Global Kalman Filter VLBI and GPS Analysis Program, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA (http://geophysics.eas.gatech.edu/people/anewman/classes/MGM/GAMIT/GLOBK_Ref_10.3.pdf).

    Google Scholar 

  • Holgate S.J. and Woodworth P.L., 2004. Evidence of enhanced coastal sea-level rise during the 1990s. Geophys. Res. Lett., 31, L07305.

    Article  Google Scholar 

  • Holgate S.J., 2007. On the decadal rates of sea level change during the twentieth century. Geophys. Res. Lett., 34, L01602.

    Article  Google Scholar 

  • Ishii M. and Kimoto M., 2009. Reevaluation of Historical Ocean Heat Content Variations with Time-Varying XBT and MBT Depth Bias Corrections. J. Oceanogr., 65, 287–299.

    Article  Google Scholar 

  • Malanotte-Rizzoli P., Manca B.B., D’Alcala M.R., Theocharis A., Brenner S., Budillon G. and Özsoy E., 1999. The Eastern Mediterranean in the 80s and in the 90s: the big transition in the intermediate and deep circulations. Dynam. Atmos. Oceans, 29, 365–395.

    Article  Google Scholar 

  • Mao A., Harrison C.G.A. and Dixon T.H., 1999. Noise in GPS coordinate time series. J. Geophys. Res., 104(B2), 2797–2818

    Article  Google Scholar 

  • Marcos M. and Tsimplis M.N., 2008. Coastal sea level trends in Southern Europe. Geophys. J. Int., 175, 70–82.

    Article  Google Scholar 

  • Mccarthy D. and Petit G., 2004. IERS Conventions (2003). IERS Tech. Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 127 pp.

    Google Scholar 

  • Peltier W.R., 2004. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) Model and GRACE. Ann. Rev. Earth Planet. Sci. Lett., 32, 111–149.

    Article  Google Scholar 

  • Roether W., Manca B.B., Klein B., Bregant D., Georgopoulos D., Beitzel V., Kovacevic V. and Luchetta A., 1996. Recent changes in Eastern Mediterranean deep waters. Science, 271, 333–335.

    Article  Google Scholar 

  • Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L., 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Teferle F.N., Bingley R.M., Williams S.D.P., Baker T.F. and Dodson A.H., 2006. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tidegauges in the UK. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 364, 917–930.

    Article  Google Scholar 

  • Tsimplis M.N. and Josey S.A., 2001. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett., 28, 803–806.

    Article  Google Scholar 

  • Tsimplis M.N. and Rixen M., 2002. Sea level in the Mediterranean Sea: the contribution of temperature and salinity changes. Geophys. Res. Lett., 29, 2136.

    Article  Google Scholar 

  • Tsimplis M.N., Álvarez-Fanjul E., Gomis D., Fenoglio-Marc L. and Pérez B., 2005. Mediterranean Sea level trends: atmospheric pressure and wind contribution. Geophys. Res. Lett., 32, L20602.

    Article  Google Scholar 

  • Tsimplis M.N., Marcos M., Somot S. and Barnier B., 2008. Sea level forcing in the Mediterranean Sea between 1960–2000. Glob. Planet. Change, 63, 325–332.

    Article  Google Scholar 

  • Tsimplis M.N., Marcos M., Colin J., Somot S., Pascual A. and Shaw A.G.P., 2009. Sea level variability in the Mediterranean Sea during the 1990s on the basis of two 2d and one 3d model. J. Mar. Syst., 78, 109–123.

    Article  Google Scholar 

  • Vigo I., Garcia D. and Chao B.F., 2005. Change of sea level trend in the Mediterranean and Black seas. J. Mar. Res., 63, 1085–1100.

    Article  Google Scholar 

  • Williams S.D.P., 2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geodesy, 76, 483–494.

    Article  Google Scholar 

  • Williams S.D.P., Bock Y., Fang P., Jamason P., Nikolaidis R.M., Prawirodirdjo L., Miller M. and Johnson, D.J., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res., 109, B03412.

    Article  Google Scholar 

  • Williams S.D.P., 2008. CATS: GPS coordinate time series analysis software. GPS Solut., 12, 147–153.

    Article  Google Scholar 

  • Wöppelmann G., Martin Miguez B., Bouin M.N. and Altamimi Z., 2007. Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob. Planet. Change, 57, 396–406.

    Article  Google Scholar 

  • Zhang J., Bock Y., Johnson H., Fang P., Williams S., Genrich J., Wdowinski S. and Behr J., 1997. Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res., 102(B8), 18057–18070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Simav.

Additional information

The manuscript solely reflects the personal views of the author and does not necessarily represent the views, positions, strategies or opinions of Turkish Armed Forces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simav, M., Yildiz, H., Türkezer, A. et al. Sea level variability at Antalya and Menteş tide gauges in Turkey: atmospheric, steric and land motion contributions. Stud Geophys Geod 56, 215–230 (2012). https://doi.org/10.1007/s11200-010-0067-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0067-x

Keywords

Navigation