Skip to main content
Log in

Quantifying scientific collaboration impact by exploiting collaboration-citation network

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Despite the growing interest in exploring the collaboration patterns and the structure of collaboration networks, the impact of collaboration associated with time-varying scholarly networks is hardly known. This paper investigates collaboration and productivity in a science career and quantifies the impact of collaboration in the collaboration-citation network. Moreover, this paper also investigates collaboration patterns and examines the typical duration of research collaborations. A SCIRank model is proposed to quantify the impact of scientific collaboration, which not only reveals the impact of co-author pairs but also identifies scholarly papers with the outstanding impact that leads to Nobel Prize awards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AlShebli, B. K., Rahwan, T., & Woon, W. L. (2018). The preeminence of ethnic diversity in scientific collaboration. Nature Communications, 9(1), 1–10.

    Article  Google Scholar 

  • Bai, X., Zhang, F., Hou, J., Lee, I., Kong, X., Tolba, A., et al. (2018). Quantifying the impact of scholarly papers based on higher-order weighted citations. PloS ONE, 13(3), e0193192.

    Article  Google Scholar 

  • Bai, X., Zhang, F., Hou, J., Xia, F., Tolba, A., & Elashkar, E. (2017). Implicit multi-feature learning for dynamic time series prediction of the impact of institutions. IEEE Access, 5, 16372–16382.

    Article  Google Scholar 

  • Bai, X., Zhang, F., & Lee, I. (2019). Predicting the citations of scholarly paper. Journal of Informetrics, 13(1), 407–418.

    Article  Google Scholar 

  • Bai, X., Zhang, F., Ni, J., Shi, L., & Lee, I. (2020). Measure the impact of institution and paper via institution-citation network. IEEE Access, 8, 17548–17555.

    Article  Google Scholar 

  • Batista-Jr, A., Gouveia, F., & Mena-Chalco, J. (2020). Predicting the Q of junior researchers using data from the first years of publication. Journal of Informetrics, 15(2), 101130.

    Article  Google Scholar 

  • Bihari, A., & Tripathi, S. (2017). EM-index: A new measure to evaluate the scientific impact of scientists. Scientometrics, 112(1), 659–677.

    Article  Google Scholar 

  • Bihari, A., & Tripathi, S. (2018). Year based EM-index: A new approach to evaluate the scientific impact of scholars. Scientometrics, 114(3), 1175–1205.

    Article  Google Scholar 

  • Bu, Y., Ding, Y., Liang, X., & Murray, D. S. (2018a). Understanding persistent scientific collaboration. Journal of the Association for Information Science and Technology, 69(3), 438–448.

    Article  Google Scholar 

  • Bu, Y., Murray, D. S., Ding, Y., Huang, Y., & Zhao, Y. (2018b). Measuring the stability of scientific collaboration. Scientometrics, 114(2), 463–479.

    Article  Google Scholar 

  • Cao, X., Chen, Y., & Liu, K. R. (2016). A data analytic approach to quantifying scientific impact. Journal of Informetrics, 10(2), 471–484.

    Article  Google Scholar 

  • Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1(1), 8–15.

    Article  Google Scholar 

  • Coccia, M., & Wang, L. (2016). Evolution and convergence of the patterns of international scientific collaboration. Proceedings of the National Academy of Sciences, 113(8), 2057–2061.

    Article  Google Scholar 

  • Dobrota, M., Bulajic, M., Bornmann, L., & Jeremic, V. (2016). A new approach to the QS university ranking using the composite I-distance indicator: Uncertainty and sensitivity analyses. Journal of the Association for Information Science and Technology, 67(1), 200–211.

    Article  Google Scholar 

  • Dong, Y., Johnson, R. A., & Chawla, N. V. (2015). Will this paper increase your h-index?: Scientific impact prediction. In Proceedings of the eighth ACM international conference on web search and data mining (pp. 149–158).

  • Dong, Y., Johnson, R. A., & Chawla, N. V. (2016). Can scientific impact be predicted? IEEE Transactions on Big Data, 2(1), 18–30.

    Article  Google Scholar 

  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Ferligoj, A., Kronegger, L., Mali, F., Snijders, T. A., & Doreian, P. (2015). Scientific collaboration dynamics in a national scientific system. Scientometrics, 104(3), 985–1012.

    Article  Google Scholar 

  • Fernández-Cano, A., Curiel-Marin, E., Torralbo-Rodríguez, M., & Vallejo-Ruiz, M. (2018). Questioning the Shanghai Ranking methodology as a tool for the evaluation of universities: An integrative review. Scientometrics, 116(3), 2069–2083.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Kapur, N., Lytkin, N., Chen, B.-C., Agarwal, D., & Perisic, I. (2016). Ranking universities based on career outcomes of graduates. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 137–144).

  • Kong, X., Mao, M., Jiang, H., Yu, S., & Wan, L. (2019a). How does collaboration affect researchers’ positions in co-authorship networks? Journal of Informetrics, 13(3), 887–900.

    Article  Google Scholar 

  • Kong, X., Shi, Y., Yu, S., Liu, J., & Xia, F. (2019b). Academic social networks: Modeling, analysis, mining and applications. Journal of Network and Computer Applications, 132, 86–103.

    Article  Google Scholar 

  • Lawrence, P., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank citation ranking: Bringing order to the web. Stanford Digital Libraries Working Paper, 9(1), 1–14.

    Google Scholar 

  • Lee, C., Kogler, D. F., & Lee, D. (2019). Capturing information on technology convergence, international collaboration, and knowledge flow from patent documents: A case of information and communication technology. Information Processing and Management, 56(4), 1576–1591.

    Article  Google Scholar 

  • Manski, C. F. (2017). Collaboration, conflict, and disconnect between psychologists and economists. Proceedings of the National Academy of Sciences, 114(13), 3286–3288.

    Article  Google Scholar 

  • Massucci, F. A., & Docampo, D. (2019). Measuring the academic reputation through citation networks via PageRank. Journal of Informetrics, 13(1), 185–201.

    Article  Google Scholar 

  • Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl 1), 5200–5205.

    Article  Google Scholar 

  • Nykl, M., Campr, M., & Ježek, K. (2015). Author ranking based on personalized PageRank. Journal of Informetrics, 9(4), 777–799.

    Article  Google Scholar 

  • Penner, O., Pan, R., Petersen, A. M., Kaski, K., & Fortunato, (2015). On the predictability of future impact in science. Scientific Reports, 3(1), 3052.

    Article  Google Scholar 

  • Perianes-Rodriguez, A., & Ruiz-Castillo, J. (2018). The impact of classification systems in the evaluation of the research performance of the Leiden Ranking universities. Journal of the Association for Information Science and Technology, 69(8), 1046–1053.

    Article  Google Scholar 

  • Petersen, A. M. (2015). Quantifying the impact of weak, strong, and super ties in scientific careers. Proceedings of the National Academy of Sciences, 112(34), E4671–E4680.

    Article  Google Scholar 

  • Pohl, H. (2020). Collaboration with countries with rapidly growing research: Supporting proactive development of international research collaboration. Scientometrics, 122(1), 287–307.

    Article  Google Scholar 

  • Purwitasari, D., Fatichah, C., Sumpeno, S., Steglich, C., & Purnomo, M. H. (2020). Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes. Scientometrics, 122, 1407–1443.

    Article  Google Scholar 

  • Ruan, X., Zhu, Y., Li, J., & Cheng, Y. (2020). Predicting the citation counts of individual papers via a BP neural network. Journal of Informetrics, 14(3), 101039.

    Article  Google Scholar 

  • Savov, P., Jatowt, A., & Nielek, R. (2020). Identifying breakthrough scientific papers. Information Processing and Management, 57(2), 102168.

    Article  Google Scholar 

  • Shneiderman, B. (2018). Twin-win model: A human-centered approach to research success. Proceedings of the National Academy of Sciences, 115(50), 12590–12594.

    Article  Google Scholar 

  • Sinatra, R., Wang, D., Deville, P., Song, C., & Barabási, A.-L. (2016). Quantifying the evolution of individual scientific impact. Science, 354(6312), aaf5239.

    Article  Google Scholar 

  • Wan, L., Xia, F., Kong, X., Hsu, C., & Ma, J. (2020). Deep matrix factorization for trust-aware recommendation in social networks. IEEE Transactions on Network Science and Engineering, 99, 1.

    Google Scholar 

  • Wang, D., Song, C., & Barabási, A.-L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  Google Scholar 

  • Williams, O. E., Lacasa, L., & Latora, V. (2019). Quantifying and predicting success in show business. Nature Communications, 10(1), 2256.

    Article  Google Scholar 

  • Wu, Q. (2010). The w-index: A measure to assess scientific impact by focusing on widely cited papers. Journal of the American Society for Information Science and Technology, 61(3), 609–614.

    Google Scholar 

  • Zhang, C., Bu, Y., Ding, Y., & Xu, J. (2018a). Understanding scientific collaboration: Homophily, transitivity, and preferential attachment. Journal of the Association for Information Science and Technology, 69(1), 72–86.

    Article  Google Scholar 

  • Zhang, C.-T. (2009). The e-index, complementing the h-index for excess citations. PLoS ONE, 4(5), e5429.

    Article  Google Scholar 

  • Zhang, F., Bai, X., & Lee, I. (2019). Author impact: Evaluations, predictions, and challenges. IEEE Access, 7, 38657–38669.

    Article  Google Scholar 

  • Zhang, F., & Wu, S. (2020). Predicting future influence of papers, researchers, and venues in a dynamic academic network. Information Processing and Management, 14(2), 101035.

    Google Scholar 

  • Zhang, J., Hu, Y., Ning, Z., Tolba, A., Elashkar, E., & Xia, F., (2018b). AIRank: Author impact ranking through positions in collaboration networks. Complexity 2018.

  • Zhang, J., Ning, Z., Bai, X., Wang, W., Yu, S., & Xia, F., (2016). Who are the rising stars in academia? In: Proceedings of the 16th ACM/IEEE-CS on joint conference on digital libraries (pp. 211–212).

Download references

Acknowledgements

This work was supported in part by Liaoning Provincial Key R&D Guidance Project (2018104021), and in part by Liaoning Province Innovative Talent Project (LR2019001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Zhang, F., Li, J. et al. Quantifying scientific collaboration impact by exploiting collaboration-citation network. Scientometrics 126, 7993–8008 (2021). https://doi.org/10.1007/s11192-021-04078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-021-04078-8

Keywords

Navigation