Skip to main content

Advertisement

Log in

Modeling the Epistemic Value of Classroom Practice in the Investigation of Effective Learning

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The paper is situated within the theoretical and methodological framework of the the Joint Action Theory of Didactics (Sensevy, Le Sens du Savoir. Eléments pour une Théorie de l’Action Conjointe en Didactique, De Boeck, 2011; Santini et al., Science & Education 27:921–961, 2018) and within the practice turn line of research on epistemic practices in science education. We investigate classroom practice seeking to achieve the concurrent learning of English as a foreign language together with disciplinary knowledge of physics as a practice. Classroom life is analyzed closely in order to identify traces of effective learning through epistemic practices (Santini et al., Science & Education 27:921–961, 2018; Kelly, Linder et al.Östman et al.Roberts et al.Wickman et al.Erikson et al.McKinnon (eds), Exploring the landscape of scientific literacy, Routledge, 2011) in both foreign language proficiency and discipline learning (Cunningham and Kelly, Science Education 101:486–505, 2017; Cunningham et al., Science Education 105:255–280, 2020). Founded on a Wittgensteinian concept of language, the notions of thought style and jargon are posited as useful notions to identify the epistemic value of classroom activity. This is in relation to the epistemic potential inherent in the situations presented in class, as well as the culturally constructed body of knowledge pertaining to the epistemic potential at stake. The modeling of classroom activity in this research rendered visible aspects of classroom practice which were essential to understanding the progression of knowledge objectives in situ, as well as the epistemic value of an actor’s move in relation to the epistemic potential of a given context. The study concludes by positing the notions as efficient tools for both the analysis and design of learning environments, in particular for environments where language can be seen to be organically linked to the practice in which it is embedded (Collins, Social Studies of Science 41:271–300, 2011; Sensevy, G. Gruson, B., & Le Hénaff, C. (2019). Sur la notion de jargon. Quelques réflexions sur le langage et les langues. In C. Chaplier & A.-M. O’Connel (Éd.), Épistémologie à usage didactique. Langue de spécialité. (p. 35–52). Paris: L’Harmattan.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Notes

  1. The notion of paradigm as defined by Kuhn (1996 3rd edition).

References

  • Allie, S., Buffler, A., Campbell, B., & Lubben, F. (1998). First-year physics students’ perceptions of the quality of experimental measurements. International Journal of Science Education, 20(4), 447–459. https://doi.org/10.1080/0950069980200405

    Article  Google Scholar 

  • Bazerman, C. (1988). Shaping written knowledge: the genre and activity of the experimental article in science. Rhetoric of the human sciences. University of Wisconsin Press.

    Google Scholar 

  • Bloor, T. (2020). A cooperative project between an associate professor of physics and an English language teacher in the LANSOD (Languages for Specialists of Other Disciiplines) sector: A JATD (Joint Action Theory in Didactics) clinical study of a CLIL (Content and langauge Integrated Learning) programme [Thesis]. Université de Bretagne Occidentale. https://tel.archives-ouvertes.fr/tel-03366555 5 October 2021

  • Bourdieu, P. (1987). Choses dites (Le Sens commun). Editions de Minuit.

  • Brandom, R. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Harvard University Press.

    Google Scholar 

  • Brandom, R. (2001). Articulating reasons: An introduction to inferentialism. Harvard University Press.

    Google Scholar 

  • Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Kluwer.

    Google Scholar 

  • Buffler, A., Allie, S., & Lubben, F. (2001). The development of first year physics students’ ideas about measurement in terms of point and set paradigms. International Journal of Science Education, 23(11), 1137–1156. https://doi.org/10.1080/09500690110039567

    Article  Google Scholar 

  • Buffler, A., Lubben, F., & Ibrahim, B. (2009). The Relationship between Students’ Views of the Nature of Science and their Views of the Nature of Scientific Measurement. International Journal of Science Education, 31(9), 1137–1156. https://doi.org/10.1080/09500690802189807

    Article  Google Scholar 

  • Bulterman-Bos, J. A. (2008). Will a Clinical Approach Make Education Research More Relevant for Practice? Educational Researcher, 37(7), 412.

    Article  Google Scholar 

  • Bulterman-Bos, J. (2017). How can a clinical research approach contribute to knowledge-building for the teaching profession? Educational Action Research, 25(1), 119–127.

    Article  Google Scholar 

  • Cartwright, N. (1989). Nature’s Capacities and Their Measurement. Clarendon Press.

    Google Scholar 

  • Cartwright, N. (1999). The Dappled World. Cambridge University Press.

    Book  Google Scholar 

  • Caussarieu, A., & Tiberghien, A. (2017). When and Why Are the Values of Physical Quantities Expressed with Uncertainties? A Case Study of a Physics Undergraduate Laboratory Course. International Journal of Science and Mathematics Education, 15(6), 997–1015. https://doi.org/10.1007/s10763-016-9734-x

    Article  Google Scholar 

  • Chevallard, Y. (1985). La transposition didactique : Du savoir savant au savoir enseigné. Pensée sauvage.

    Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné. La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. In R. Douady & A. Mercier (Eds.), Research in Didactique of Mathematics, Selected Papers (pp. 131–168). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6(2), 131–134.

    Article  Google Scholar 

  • Collectif Didactique pour enseigner. (2019). Didactique pour enseigner. Presses Universitaires de Rennes.

  • Collins, H. (2011). Language and practice. Social Studies of Science, 41(2), 271–300. https://doi.org/10.1177/0306312711399665

    Article  Google Scholar 

  • Compton, A. H., & Simon, A. W. (1925). Measurements of β -Rays Associated with Scattered X-Rays. Physical Review, 25(3), 306–313. https://doi.org/10.1103/PhysRev.25.306

    Article  Google Scholar 

  • Coyle, D., Hood, P., & Marsh, D. (2010). CLIL: Content and language integrated learning. Cambridge University Press.

    Book  Google Scholar 

  • Cunningham, C. M., & Kelly, G. J. (2017). Epistemic Practices of Engineering for Education. Science Education, 101(3), 486–505.

    Article  Google Scholar 

  • Cunningham, C. M., Kelly, G. J., & Meyer, N. (2020). Affordances of engineering with English learners. Science Education, 105(2), 255–280. https://doi.org/10.1002/sce.21606

    Article  Google Scholar 

  • Dalton-Puffer, C. (2007). Discourse in content and language integrated learning (CLIL) classrooms. John Benjamins Pub.

    Book  Google Scholar 

  • Dalton-Puffer, C. (2011). Content-and-Language Integrated Learning: From Practice to Principles? Annual Review of Applied Linguistics, 31, 182–204. https://doi.org/10.1017/S0267190511000092

    Article  Google Scholar 

  • Dewey, J. (1997). Experience and education (1. ed). The Kappa Delta Pi Lecture Series. Simon & Schuster.

  • Dewey, J. (1910/1998). How we think: A restatement of the relation of reflective thinking to the educative process. Houghton Mifflin.

  • Dewey, J., Nagel, E., & Boydston, J. A. (2008). The collected works of John Dewey. [...] Vol. 12: The later works, 1925 - 1953 1938; [logic: the theory of inquiry]. Southern Illinois Univ. Press.

  • Dretske, F. I. (1981). Knowledge & the flow of information (1st MIT Press ed). MIT Press.

  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. https://doi.org/10.3102/0091732X07309371

    Article  Google Scholar 

  • Fleck, L. (1979). Genesis and development of a scientific fact. University of Chicago Press.

    Google Scholar 

  • Firth, A., & Wagner, J. (1997). On Discourse, Communication, and (Some) Fundamental Concepts in SLA Research. The Modern Language Journal, 81(3), 285–300. https://doi.org/10.1111/j.1540-4781.1997.tb05480.x

    Article  Google Scholar 

  • Gajo, L. (2007a). Enseignement d’une DNL en langue étrangère : De la clarification à la conceptualisation. Tréma, 28, 37–48. https://doi.org/10.4000/trema.448

    Article  Google Scholar 

  • Gajo, L. (2007b). Linguistic Knowledge and Subject Knowledge: How Does Bilingualism Contribute to Subject Development? International Journal of Bilingual Education and Bilingualism, 10(5), 563–581. https://doi.org/10.2167/beb460.0

    Article  Google Scholar 

  • Gee, J. P., & Greene, J. L. (1998). Discourse Analysis, Learning, and Social Practice: A Methodological Study. In. Review of Research in Education, 93, 119–169. https://doi.org/10.3102/0091732X023001119

    Article  Google Scholar 

  • Gee, J. P. (1999). An introduction to discourse analysis: Theory and method. Routledge.

    Google Scholar 

  • Foucault, M. (1963). The Birth of the Clinic. Routledge.

    Google Scholar 

  • Ginzburg, C. (1983). Clues: Morelli, Freud, and Sherlock Holmes. In U. Eco & T. Sebeok (Eds.), (pp. 81-118). Bloomington and Indianapolis: Indiana University Press.

  • Gruson, B. (2019). L’action conjointe en didactique des langues : Élaborations conceptuelles et méthodologiques. Presses universitaires de Rennes

  • Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge University Press.

    Book  Google Scholar 

  • Hall, Prof. J. K., Hellermann, J., & Pekarek Doehler, S. (2011). L2 interactional competence and development. Channel View Publications. http://public.eblib.com/choice/publicfullrecord.aspx?p=4844888

  • Hall, J. K. (2019). The Contributions of Conversation Analysis and Interactional Linguistics to a Usage-Based Understanding of Language: Expanding the Transdisciplinary Framework. The Modern Language Journal., 103, 80–94.

    Article  Google Scholar 

  • Halliday, M. A. K., & Matthiessen, C. M. I. M. (2004). An introduction to functional grammar (3rd ed). Oxford University Press.

  • Jameau, A., & Le Hénaff, C. (2018). Content and language integrated learning. Teaching in science: A didactic analysis of a case study. Review of Science, Mathematics and ICT Education. Vol 12, (2)

  • Kelly, G. J. (2008). Inquiry, activity, and epistemic practice. In R. Duschl & R. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99–117). Lawrence Erlbaum Associates.

    Google Scholar 

  • Kelly, G. J. (2011). Scientific literacy, discourse, and epistemic practices. In C. Linder, L. Östman, D. A. Roberts, P. Wickman, G. Erikson, & A. McKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 61–73). Routledge.

    Google Scholar 

  • Kelly, G. J. (2016). Methodological considerations for the study of epistemic cognition in practice. In J. Greene, W. Sandoval, & I. Bråten (Eds.), Handbook of Epistemic Cognition (pp. 393–408). Routledge.

    Google Scholar 

  • Kelly, G. J. & Licona, P., (2018). Epistemic practices and science education. In History, Philosophy and Science Education (pp. 139–165). Springer International Publishing. https://doi.org/10.1007/978-3-319-62616-1_5

  • Kramsch, C. J. (Ed.). (2002). Language acquisition and language socialization: Ecological perspectives. Advances in applied linguistics. Continuum.

  • Kuhn, T. (1977). Second Thoughts on Paradigm. In T. Kuhn (Ed.), The Essential Tension: Selected Studies in Scientific Tradition and Change (pp. 293–319). University of Chicago Press.

    Chapter  Google Scholar 

  • Lederman, J., Lederman, N., Wickman, P. O., & Lager-Nyqvist, L. (2007). An international, systematic investigation of the relative effects of inquiry and direct instruction. Sweden: European Science Education Research Association

  • Lemke, J. L. (1990). Talking science: Language, learning, and values. Ablex.

    Google Scholar 

  • Lemke, J. L. (2000). Across the scales of time: Artifacts, activities, and meanings in eco-social systems. Mind, Culture, and Activity, 7(4), 273–290.

    Article  Google Scholar 

  • Morellato, M., (2017). Travail coopératif entre professeurs et chercheurs dans le cadre d’une ingénierie didactique sur la construction des nombres : conditions de la constitution de l’expérience collective. https://tel.archives-ouvertes.fr/tel-01591957

  • Mead, G. H., & Morris, C. W. (1974). Works of George Herbert Mead. Vol. 1: Mind, self, and society: from the standpoint of a social behaviorist (19. impr). Univ. of Chicago Press.

    Google Scholar 

  • North, B., & Piccardo, E. (2016). Developing illustrative descriptors of aspects of mediation for the Common European Framework of Reference (CEFR): A Council of Europe project. Language Teaching, 49(3), 455–459. https://doi.org/10.1017/S0261444816000100

    Article  Google Scholar 

  • Östman, L., & Wickman, P.-O. (2014). A Pragmatic Approach on Epistemology, Teaching and Learning. Science Education, 98, 375–382. https://doi.org/10.1002/sce.21105

    Article  Google Scholar 

  • Phelps, L. W. (1988). Composition as a human science: Contributions to the self-understanding of a discipline. Oxford University Press.

    Google Scholar 

  • Ryle, G. (2009). Teaching and Training In Collected Essays 1929–1968: Collected Papers Volume 2 (pp. 464–478). London ; New York: Routledge.

    Book  Google Scholar 

  • Santini, J. (2021). Comprendre des concepts. Presses Universitaires de Rennes.

    Google Scholar 

  • Santini, J., Bloor, T., & Sensevy, G. (2018). Modeling Conceptualization and Investigating Teaching Effectiveness: A Comparative Case Study of Earthquakes Studied in Classroom Practice and in Science. Science & Education, 27(9–10), 921–961. https://doi.org/10.1007/s11191-018-0016-6

    Article  Google Scholar 

  • Sawyer, R. K., (2006). Analyzing Collaborative Discourse. In The Cambridge handbook of the learning sciences (pp. 187–204). Cambridge University Press.

  • Schubauer-Leoni, M.-L., & Leutenegger, F. (2002). Expliquer et comprendre dans une approche clinique/expérimentale du didactique ordinaire. In F. Leutenegger & M. Saada-Robert (Eds.), Expliquer et comprendre en sciences de l’éducation (pp. 227–251). Bruxelles: De Boeck.

    Google Scholar 

  • Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76.

    Article  Google Scholar 

  • Sensevy, G. (2011). Le Sens du Savoir. Eléments pour une Théorie de l’Action Conjointe en Didactique. De Boeck.

    Book  Google Scholar 

  • Sensevy, G., & Bloor, T. (2019). Cooperative Didactic Engineering. In S. Lerman (Éd.), Encyclopedia of Mathematics Education (p. 1‑5). Springer International Publishing. https://doi.org/10.1007/978-3-319-77487-9_100037-1

  • Sensevy, G., Mercier, A., & Schubauer-Leoni, M. L. (2000). Vers un modèle de l’action didactique du professeur à propos de la Course à 20. Recherches en Didactique des mathématiques, 20(3), 263–304.

  • Sensevy, G., Schubauer-Leoni, M. L., Mercier, A., Ligozat, F., & Perrot, G. (2005). An attempt to model the teacher’s action in the mathematics class. Educational Studies in Mathematics, 59(1), 153–181.

    Article  Google Scholar 

  • Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424–446.

    Article  Google Scholar 

  • Sensevy, G., Gruson, B., & Forest, D. (2015). On the Nature of the Semiotic Structure of the Didactic Action: The Joint Action Theory in Didactics Within a Comparative Approach. Interchange, 46(4), 387–412. https://doi.org/10.1007/s10780-015-9266-2

    Article  Google Scholar 

  • Sensevy, G. Gruson, B., & Le Hénaff, C. (2019). Sur la notion de jargon. Quelques réflexions sur le langage et les langues. In C. Chaplier & A.-M. O’Connel (Éd.), Épistémologie à usage didactique. Langue de spécialité. (p. 35–52). Paris: L’Harmattan.

  • Stern, D. G. (2003). The practical turn. In S. Turner & P. Roth (Eds.), The Blackwell guide to the philosophy of the social sciences (pp. 185–206). Blackwell.

    Google Scholar 

  • Stuewer, R. H. (1975). The Compton effect: Turning point in physics. Science History Publications.

    Google Scholar 

  • Tiberghien, A., Cross, D., & Sensevy, G. (2014). The evolution of classroom physics knowledge in relation to certainty and uncertainty. Journal of Research in Science Teaching, 51(7), 930–961.

    Article  Google Scholar 

  • Tomasello, M. (2008). Origins of human communication. MIT Press.

    Book  Google Scholar 

  • Vygotskiĭ, L. S., Hanfmann, E., Vakar, G., & Kozulin, A. (2012). Thought and language (Rev. and expanded ed). MIT Press.

    Google Scholar 

  • Wegner, A. (2012). Seeing the Bigger Picture. International CLIL Research Journal, Vol 1 (4)

  • Wickman, P.-O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88, 325–344.

    Article  Google Scholar 

  • Wickman, P.-O., & Östman, L. (2002). Learning as Discourse Change: A Sociocultural Mechanism. Science Education, 86, 601–623. https://doi.org/10.1002/sce.10036

    Article  Google Scholar 

  • Wittgenstein, L. (1997). Philosophical Investigations. Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Bloor.

Ethics declarations

Consent to Participate

The students represented in this paper consented to participate.

Consent for Publication

The students represented in this paper consented to the use of their image and expression for research purposes.

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloor, T., Santini, J. Modeling the Epistemic Value of Classroom Practice in the Investigation of Effective Learning. Sci & Educ 32, 169–197 (2023). https://doi.org/10.1007/s11191-021-00298-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-021-00298-9

Navigation