Skip to main content

Advertisement

Log in

Heuristic Diagrams as a Tool to Teach History of Science

  • Published:
Science & Education Aims and scope Submit manuscript

If we just show the findings and products of science,

no matter how useful and inspiring they may be,

without communicating its critical method,

how the average person can distinguish

between science and pseudoscience?

Both are presented as baseless assertion

C. Sagan (1997, p. 39)

Abstract

The graphic organizer called here heuristic diagram as an improvement of Gowin’s Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The left side originally related in Gowin’s Vee with philosophies, theories, models, laws or regularities now agrees with Toulmin’s concepts (language, models as representation techniques and application procedures). Mexican science teachers without experience in science education research used the heuristic diagram to learn about the history of chemistry considering also in the left side two different historical times: past and present. Through a semantic differential scale teachers’ attitude to the heuristic diagram was evaluated and its usefulness was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bachelard, G. (1976). El materialismo racional. Buenos Aires: Paidos.

    Google Scholar 

  • Bachelard, G. (1979). La formación del espíritu científico. México: Siglo XXI.

    Google Scholar 

  • Calais, G. (2009). The Vee diagram as a problem solving strategy: Content area reading/writing implications. National Forum Teacher Educational Journal, 19, 1–8.

    Google Scholar 

  • Camacho, J. P., & Cuéllar, L. H. (2007). La ley periódica analizada desde el modelo de Toulmin. Aportes para la enseñanza de la historia de la química. en Quintanilla M. (comp.). Historia de la Ciencia. Propuestas para su enseñanza, Vol II. (pp. 107–124). Santiago: Arrayan.

  • Chalmers, A. F. (1978). What is this thing called science?. Milton Keynes: Open University Press.

    Google Scholar 

  • Chamizo, J. A. (2007a). Las aportaciones de S. Toulmin a la enseñanza de las ciencias. Enseñanza de las ciencias, 25, 133–146.

    Google Scholar 

  • Chamizo, J. A. (2007b). Teaching modern chemistry through ‘historical recurrent teaching models’. Science & Education, 16, 197–216.

    Article  Google Scholar 

  • Chamizo, J. A. (2009a). Heuristic diagrams as a tool to teach history of chemistry. In: Proceedings from 10th international history and philosophy of science teaching group international conference. South Bend, Indiana: Notre Dame University.

  • Chamizo, J. A. (2009b). Los diagramas heurísticos en la enseñanza de la historia de la química. In Z. Monroy & R. León-Sánchez (Eds.), Epistemología, psicología y enseñanza de la ciencia. México: UNAM.

    Google Scholar 

  • Chamizo, J. A., & Colsa M. E. (2009). Heuristic diagrams as an assessment of experimental student learning tool. In European science education research association conference. Istanbul, ESERA.

  • Chamizo, J. A. (2010). Introducción Experimental a la Historia de la Química. Can be downland from http://www.joseantoniochamizo.com/educacion/index.html. Accessed 11 April 2011.

  • Chamizo, J. A., & Hernández, G. (2000). Construcción de preguntas, la Ve epistemológica y examen ecléctico personalizado. Educación Química, 11, 182–187.

    Google Scholar 

  • Chamizo, J. A., & Izquierdo, M. (2007). Evaluación de las competencias de pensamiento científico. Alambique, 51, 9–19.

    Google Scholar 

  • Cordova, J. L., Dosal, A., & Feregrino, V. (2007). La importancia de las preguntas. Alambique, 54, 16–27.

    Google Scholar 

  • Crosland, M. P. (1978). Historical studies in the language of chemistry. New York: Dover.

    Google Scholar 

  • De Berg, K. C. (1989). The emergence of quantification in the pressure–volume relationship for gases: A textbook analysis. Science Education, 73, 115–134.

    Article  Google Scholar 

  • Dominowski, R. L. (1998). Verbalization and problem-solving. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 25–46). Hillsdale, NJ: Erbalum.

    Google Scholar 

  • Doran, R., Chan, F., Tamir, P., & Lenhardt, C. (2002). Science educators’s guide to laboratory assessment. Arlington: NSTA Press.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Perspectives from classroom-based research. Dordrecht: Springer.

    Google Scholar 

  • Escudero, C., & Moreira, M. A. (1999). La V epistemological aplicada a algunos enfoques en resolución de problemas. Enseñanza de las Ciencias, 17, 61–68.

    Google Scholar 

  • Estany, A., & Izquierdo, M. (1990). La evolución del concepto de afinidad analizada desde el modelo de Toulmin. Llull, 13, 349–378.

    Google Scholar 

  • Fox, R. (2007). Gowin’s knowledege vee and the integration of philosophy and methodology: A case study. The Journal of Geography in Higher Education, 31, 269–284.

    Article  Google Scholar 

  • Frazer, M. J. (1982). Nyholm lecture: Solving chemical problems. Chemical Society Reviews, 11, 171–190.

    Article  Google Scholar 

  • Gabel, D. (1989). What research says to the science teacher, Vol. 15. Problem solving. Washington: NSTA Press.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws. Chicago: The University of Chicago Press.

    Google Scholar 

  • Gowin, B., & Alvarez, M. C. (2005). The art of educating with V diagrams. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hacking, I. (1983). Representing and intervening. Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hattie, J. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Heise, R. D. (1970). The semantic differential and attitude research. In F. Gene (Ed.), Attitude measurement (pp. 235–253). Chicago: Rand McNally.

    Google Scholar 

  • Henao, B. L., Stipcich, M. S., & Moreira, M. A. (2009). “Sustancia” en el devenir de la química: Dime cómo te buscan y te dire que eres. Ciência & Educação, 15, 497–514.

    Google Scholar 

  • Herron, J. D., & Greenbowe, T. J. (1986). What we can due about Sue: A case study of competence. Journal of Chemical Education, 63, 526–531.

    Article  Google Scholar 

  • Hodson, D. (1994). Hacia un enfoque más crítico del trabajo de laboratorio. Enseñanza de las Ciencias, 12, 299–313.

    Google Scholar 

  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students’ ability to ask more and questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42, 791–806.

    Article  Google Scholar 

  • Höttecke, D., & Celestino Silva, C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20, 293–316.

    Article  Google Scholar 

  • Husbands, C. (2003). What is history teaching? Language, ideas and meaning in learning about the past. Buckingham: Open University Press.

    Google Scholar 

  • Jacob, C. (2001). Analysis and synthesis. Interdependent operations in chemical language and practice. Hyle, 7, 31–50.

    Google Scholar 

  • Jensen, W. (1998). Logic, history, and the chemistry textbook iii. One chemical revolution or three? Journal of Chemical Education, 75, 961–969.

    Article  Google Scholar 

  • Justi, R. (2000). Teaching with historical models. In J. K. Gilbert & C. J. Boutler (Eds.), Developing models in science education (pp. 209–226). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Justi, R., & Gilbert, J. (1999). History and philosophy of science through models: The case of chemical kinetics. Science & Education, 8, 287–307.

    Article  Google Scholar 

  • Keles, O., & Özsoy, S. (2009). Pre-service teachers’ attitudes toward use of Vee diagrams in general physiscs laboratory. International Electronic Journal of Elementary Education, 1(3), 1–17.

    Google Scholar 

  • Knight, D. (1992). Ideas in chemistry. A history of the science. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Knowlton, D.S. (2003). Preparing students for educated living: Virtues of problem-based learning across the higher education. In D. S. Knowlton & D. C. Sharp (Eds.) New directions for teaching and learning problem-based learning in the information age, Vol. 95 (pp. 5–12). San Francisco: Jossey-Bass.

  • Kragh, H. (1987). An introduction to the historiography of science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Latour, B. (1999). Pandora’s hope. Essays on the reality of science studies. Cambridge: Harvard University Press.

    Google Scholar 

  • Laudan, L. (1977). Progress and its problems: Toward a theory of scientific growth. Berkeley: University of California Press.

    Google Scholar 

  • Laudan, L. (1990). Science and relativism. Some key controversies in the philosophy of science. Chicago: The University of Chicago Press.

    Google Scholar 

  • Lin, H., & Chiu, H. (2004). Student understanding of the nature of science and their problem-solving strategies. International Journal of Science Education, 26, 101–112.

    Article  Google Scholar 

  • McComas, W. (2000). The nature of science in science education. Rationales and strategies. Dordrecht: Kluwer.

    Google Scholar 

  • Novak, J. D., & Gowin, D. R. (1984). Learning how to learn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41, 994–1020.

    Article  Google Scholar 

  • Otero, J., & Graesser, A. (2001). Elements of a model of questions asking. Cognition and Instruction, 19, 143–175.

    Article  Google Scholar 

  • Rios, G. (2011). Las preguntas como estrategia didáctica. Tesis de Maestria, México: UNAM.

    Google Scholar 

  • Robson, C. (2002). Real world research. Oxford: Blackwell.

    Google Scholar 

  • Rodgers, M., Runyon, D., Starret D., & Von Holzen R. (2006).The 21st century learner. In Proceedings from the 22nd annual conference on distance teaching and learning, Madison.

  • Sagan, C. (1997). El mundo y sus demonios. Barcelona: Planeta.

    Google Scholar 

  • Schneider, F. (2006). Rubrics for teacher education in community college. Community College Enterprise, 12, 39–55.

    Google Scholar 

  • Schummer, J. (1999). Coping with the growth of chemical knowledge: Challenges for chemistry documentation, education, and working chemists. Educación Química, 10, 92–101.

    Google Scholar 

  • Schwab, J. J. (1962). The teaching of science as inquiry. Cambridge: Harvard University Press.

    Google Scholar 

  • Sillitoe, J., & Webb, J. (2007). Facilitating the active interplay between the conceptual and methodological aspects of a higher degree research project-Gowin’s Vee heuristic. In Enhancing higher education theory and scholarship, proceedings of the 30th HERDSA annual conference, Adelaide, 8–11 July.

  • Tague, J., Beheshti, J., & Rees-Potter, L. (1981). The law of exponential growth: Evidence, implications, and forecasts. Library Trends, 30, 125–150.

    Google Scholar 

  • Tiles, M. (1984). Bachelard: Science and objectivity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Toulmin, S. (1972). Human understanding. Princeton: Princeton University Press.

    Google Scholar 

  • Toulmin, S. (2003). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Trowbridge, J. E., & Wandersee, J. H. (1998). Theory-driven graphic organizers. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Teaching science for understanding (pp. 95–128). San Diego: Academic Press.

    Google Scholar 

  • Valk, T., & Jong, O. (2009). Scaffolding science teachers in open-inquiry teaching. International Journal of Science Education, 31, 829–850.

    Article  Google Scholar 

  • van Berkel, B., de Vos, W., Veronk, A. H., & Pilot, A. (2000). Normal science education and its dangers: The case of school chemistry. Science & Education, 9, 123–159.

    Article  Google Scholar 

  • Wandersee, J. H. (1990). Concept mapping and the cartography of cognition. Journal of Research in Science Teaching, 27, 923–936.

    Article  Google Scholar 

  • Wandersee, J. H., & Baudoin Griffard, P. (2002). The history of chemistry: Potential and actual contributions to chemical education. In J. K. Gilbert, et al. (Eds.), Chemical education: Towards research-based practice (pp. 29–46). Dordrecht: Kluwer.

    Google Scholar 

  • Watts, M. (1991). The science of problem-solving. A practical guide for science teachers. London: Cassell.

    Google Scholar 

Download references

Acknowledgments

I am grateful to Yosajandi Pérez and Alejandra García for the methodological and language discussions and also to all teachers-in training and the reviewers. All of them help me to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Chamizo.

Appendix

Appendix

1.1 Instructions for Completing a Heuristic Diagram

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamizo, J.A. Heuristic Diagrams as a Tool to Teach History of Science. Sci & Educ 21, 745–762 (2012). https://doi.org/10.1007/s11191-011-9387-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9387-7

Keywords

Navigation