Skip to main content
Log in

Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO2

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The review of publications concerning the impact of increasing CO2 concentration in the Earth’s atmosphere (Ca) on higher terrestrial plants. The physiological changes in plants induced by increasing Ca, including growth and biochemical composition, the characteristics of photosynthesis and respiration, as well as the molecular mechanisms of the regulation of the activity of most important biosynthetic enzymes at early and late stages of the exposure to elevated Ca are under consideration. Various concepts of metabolic regulation during acclimation to increasing CO2 concentration are critically reviewed. The pathways of possible involvement of carbonic anhydrase-mediated systems of CO2 transport and concentration during C3 photosynthesis of higher plants, the metabolic and signal mechanisms of photosynthesis inhibition by carbohydrates and the role of ethylene at elevated Ca are presented. The effect of elevated Ca on plant development and source-sink relations, as well as its interaction with other environmental factors, such as mineral, primarily nitrogen nutrition, light, temperature, and water regime, are discussed in with the context of potential forecasting of the consequences of increase in Ca and temperature for the activities of various higher plant forms in the rapidly changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

CO2 concentration in air

Rubisco-A:

Rubisco activase

sCA:

soluble carbonic anhydrase

SPS:

sucrose phosphate synthase

P n :

photosynthetic CO2 exchange rate

PSI and PSII:

photosystems I and II

R d and R l :

respiration in darkness and in light respectively

R/Sh:

roots/shoots weight ratio

REFERENCES

  1. R.M. Gifford (1982) Global Photosynthesis in Relation to Our Food and Energy Needs Govindjii (Eds) Photosynthesis Development, Carbon Metabolism, and Plant Productivity Academic New York 459–495

    Google Scholar 

  2. R. Watson H. Rodhe H. Oescheger U.O. Siegenthaler (1990) Greenhouse Gases and Aerosols J.T. Houghton (Eds) et al. Climate Change: The Scientific Assessment Cambridge Univ. Press Cambridge 1–40

    Google Scholar 

  3. G. Bowes (1991) ArticleTitleGrowth at Elevated CO2: Photosynthetic Responses Mediated through Rubisco Plant Cell Environ. 14 795–806

    Google Scholar 

  4. M. Stitt (1991) ArticleTitleRising CO2 Levels and Their Potential Significance for Carbon Flow in Photosynthetic Cells Plant Cell Environ. 14 741–762

    Google Scholar 

  5. B.G. Drake M.A. Gonzàles-Meler S.P. Long (1997) ArticleTitleMore Efficient Plants: A Consequence of Rising Atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 609–639

    Google Scholar 

  6. J.D. Cure B. Adcock (1986) ArticleTitleCrop Response to Carbon Dioxide Doubling: A Literature Survey Agric. Forest Meteorol. 38 127–145

    Google Scholar 

  7. B.I. Gulyaev (1986) ArticleTitleInfluence of CO2 Concentrations on Photosynthesis, Growth, and Productivity of Plants Fiziol. Biokh. Kul’t. Rast. 18 574–591

    Google Scholar 

  8. B.A. Kimball (1989) ArticleTitleCarbon Dioxide and Agriculture Yield: Assemblance and Analysis of 430 Prior Observations Agron. J. 75 779–788

    Google Scholar 

  9. J.F. Farrar M.L. Williams (1991) ArticleTitleThe Effects of Increased Atmospheric Carbon Dioxide and Temperature on Carbon Partitioning, Source-Sink Relations, and Respiration Plant Cell Environ. 14 819–830

    Google Scholar 

  10. G. Bowes (1993) ArticleTitleFacing the Inevitable: Plants and Increasing Atmospheric CO2 Levels Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 309–332

    Google Scholar 

  11. O. Urban (2003) ArticleTitlePhysiological Impacts of Elevated CO2 Concentrations Ranging from Molecular to Whole Plant Response Photosynthetica 41 9–20

    Google Scholar 

  12. E.A. Ainsworth P.A. Davey C.J. Bernacchi O.C. Dermody E.A. Heaton D.J. Moore P.D. Morgan S.L. Naidu H.-Sh.Y. Ra X.G. Chu S.P. Curtis S.P. Long (2002) ArticleTitleA Meta-Analysis of Elevated [CO2] Effects on Soybean (Glycine max) Physiology, Growth and Yield Global Change Biol. 8 695–709

    Google Scholar 

  13. S. Seneweera S.K. Aben A.S. Basra B. Jones J.P. Conroy (2003) ArticleTitleInvolvement of Ethylene in the Morphological and Developmental Response of Rice to Elevated Atmospheric CO2 Concentrations Plant Growth Regul. 39 143–153

    Google Scholar 

  14. T.F. Andreeva L.E. Strogonova S.Yu. Stepanenko S.N. Maevskaya N.N. Protasova I.N. Murashov (1979) ArticleTitleDependence of Activity of the Photosynthetic Apparatus and Growth on Light Intensity and CO2 Concentration under Their Long-Time Action Fiziol. Rast. 26 1156–1162

    Google Scholar 

  15. V.A. Mudrik A.K. Romanova B.N. Ivanov N.S. Novichkova V.A. Polyakova (1997) ArticleTitleEffect of Increased CO2 Concentration on Growth, Photosynthesis, and Biochemical Composition of Pisum sativum L. Plants Fiziol. Rast. 44 26–32

    Google Scholar 

  16. H. Demmers-Derks R.A.G. Mitchell V.J. Mitchell D.W. Lawlor (1998) ArticleTitleResponse of Sugar Beet (Beta vulgaris L.) Yield and Biochemical Composition to Elevated CO2, Temperature and Two Nitrogen Applications Plant Cell Environ. 21 829–836

    Google Scholar 

  17. G. Edwards D. Walker (1983) C3: C4 Mechanisms, and Cellular and Environmental Regulation of Photosynthesis Blackwell Sci. Oxford

    Google Scholar 

  18. J.P. Maroco G.E. Edwards M.S.B. Ku (1999) ArticleTitlePhotosynthetic Acclimation of Maize to Growth under Elevated Levels of Carbon Dioxide Planta 210 115–125

    Google Scholar 

  19. T.F. Andreeva L.E. Strogonova S.Yu. Voevudskaya S.N. Maevskaya N.N. Cherkanova (1989) ArticleTitleInfluence of the High CO2 Concentration on Photosynthesis, Carbohydrate and Nitrogen Metabolism, and Growth in Mustard Plants Fiziol. Rast. 36 40–48

    Google Scholar 

  20. S.B. Idso B.A. Kimball (1992) ArticleTitleSeasonal Fine-Root Biomass Development of Sour Oranges Trees Grown in Atmospheres of Ambient and Elevated CO2 Concentration Plant Cell Environ. 15 337–341

    Google Scholar 

  21. D. Eamus P.G. Jarvis (1989) ArticleTitleThe Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests Adv. Ecol. Res. 19 1–55

    Google Scholar 

  22. Y. Luo C.B. Field H.A. Mooney (1994) ArticleTitlePredicting Responses of Photosynthesis and Root Fraction to Elevated [CO2]: Interaction among Carbon, Nitrogen, and Growth Plant Cell Environ. 17 1195–1204

    Google Scholar 

  23. W.M. Korschner F. Wagner E.H. Visscher H. Vissner (1997) ArticleTitleThe Response of Leaf Stomatal Frequency to a Future CO2-Enriched Atmosphere: Constraints from Historical Observations Geol. Rundschau 86 512–517

    Google Scholar 

  24. J.S. Amthor G.W. Koch A.J. Bloom (1991) ArticleTitleRespiration in a Future, Higher-CO2 World Plant Cell Environ. 14 13–20

    Google Scholar 

  25. S.N. Tsyuryupa V.A. Mudrik A.K. Romanova (2002) ArticleTitleEffects of the Increased CO2 Concentration on Transpiration and Kinetics of Photosynthetic CO2 Exchange in Sugar Beet under Various Nitrate Levels Dokl. Akad. Nauk 384 563–565

    Google Scholar 

  26. R.B. Thomas K.L. Griffin (1994) ArticleTitleDirect and Indirect Effects of Atmospheric Carbon Dioxide Enrichment on Leaf Respiration of Glycine max (L.) Merr. Plant Physiol. 104 355–361

    Google Scholar 

  27. X. Wang J.D. Lewis D.T. Tissues J.R. Seemann K.L. Griffin (2001) ArticleTitleEffects of Elevated Atmospheric CO2 Concentration on Leaf Dark Respiration of Xanthium strumarium in Light and in Darkness Proc. Natl. Acad. Sci. USA 98 2479–2484

    Google Scholar 

  28. R.C. Sicher D.F. Kremer (1994) ArticleTitleResponses of Nicotiana tabacum to CO2 Enrichment at Low Photon Flux Density Physiol. Plant. 92 383–388

    Google Scholar 

  29. Gulyaev, B.I., Sitnitskii, P.A., Manuil’skii, V.D., and Likholat, D.A., Influence of the Elevated CO2 Concentration on Photosynthesis, Growth, and Phytohormones in Sunflower, Dokl. Akad. Nauk USSR, Ser. B, 1989, no. 12, pp. 55–58.

  30. A.K. Romanova V.A. Mudrik N.S. Novichkova R.N. Demidova V.A. Polyakova (2002) ArticleTitlePhysiological and Biochemical Characteristics of Sugar Beet Plants Grown at an Increased Carbon Dioxide Concentration and at Various Nitrate Doses Fiziol. Rast. 49 230–237

    Google Scholar 

  31. S. Stitt S. Huber P. Kerr (1987) Control of Sucrose Synthesis M.D. Hatch N.K. Boardman (Eds) The Biochemistry of Plants Academic New York 327

    Google Scholar 

  32. C.H. Foyer (1988) ArticleTitleFeedback Inhibition of Photosynthesis through Source-Sink Regulation in Leaves Plant Physiol. Biochem. 26 483–492

    Google Scholar 

  33. G.F.J. Millford J. Pearman (1975) ArticleTitleThe Relationship between Photosynthesis and Concentration of Carbohydrates in the Leaves of Sugar Beet Photosynthetica 9 78–81

    Google Scholar 

  34. S. Sawada V. Kuninaka K. Watanabe A. Sato H. Kawamura K. Komine T. Sakamoto M. Kasai (2001) ArticleTitleThe Mechanism of Suppress Photosynthesis through End-Product Inhibition in Single-Rooted Soybean Leaves during Acclimation to CO2 Enrichment Plant Cell Physiol. 42 1093–1102

    Google Scholar 

  35. S. Yelle R.C. Beeson M.J. Trudel A. Gosselin (1989) ArticleTitleAcclimation of Two Tomato Species to High Atmospheric CO2: 1. Sugar and Starch Concentration Plant Physiol. 90 1465–1472

    Google Scholar 

  36. J.H.H. Williams A.L. Winters S.J. Rollosk J.F. Farrar (1992) ArticleTitleRegulation of Leaf Metabolism by Sucrose Fiziol. Rast. 39 687–691

    Google Scholar 

  37. A.L. Kursanov (1976) Transport assimilyatov v rastenii Nauka Moscow

    Google Scholar 

  38. O.A. Pavlinova E.N. Balakhontsev M.F. Prasolova M.V. Turkina (2002) ArticleTitleSucrose-Phosphate Synthase, Sucrose Synthase, and Invertase in Sugar Beet Leaves Fiziol. Rast. 49 78–84

    Google Scholar 

  39. S.V. Sokolova N.O. Balakshina M.S. Krasavina (2002) ArticleTitleActivation of Soluble Acid Invertase Accompanies the Cytokinin-Induced Source-Sink Leaf Transition Fiziol. Rast. 49 98–104

    Google Scholar 

  40. D.T. Upmeyer G.M. Koller (1973) ArticleTitleDiurnal Trends in Net Photosynthesis Rate and Carbohydrate Levels in Soybean Leaves Plant Physiol. 51 871–874

    Google Scholar 

  41. S.P. Robinson (1985) ArticleTitleOsmotic Adjustment by Intact Isolated Chloroplasts in Response to Osmotic Stress and Its Effect on Photosynthesis and Chloroplast Volume Plant Physiol. 79 996–1002

    Google Scholar 

  42. Y. Kovtun J. Daie (1995) ArticleTitleEnd-Product Control of Carbon Metabolism in Culture-Grown Sugar Beet Plants Plant Physiol. 108 1647–1656

    Google Scholar 

  43. E.E. Goldschmidt S.C. Huber (1992) ArticleTitleRegulation of Photosynthesis by End-Product Accumulation in Leaves of Plants Storing Starch, Sucrose, and Hexose Sugars Plant Physiol. 99 1443–1448

    Google Scholar 

  44. A. Schaewen ParticleVon M. Stitt R. Schmidt U. Sonnewald L. Willmitzer (1990) ArticleTitleExpression of a Yeast-Derived Invertase in the Cell Wall of Tobacco and Arabidopsis Plants Leads to Accumulation of Carbohydrate and Inhibition of Photosynthesis and Strongly Influences Growth and Phenotype of Transgenic Tobacco Plants EMBO J. 9 3033–3044

    Google Scholar 

  45. V. Stitt A. Schaeven Particlevon L. Willmitzer (1991) ArticleTitle“Sink” Regulation of Photosynthetic Metabolism in Transgenic Tobacco Plants Expressing Yeast Invertase in Their Cell Wall Involves a Decrease of the Calvin Cycle Enzymes and an Increase of Glycolytic Enzymes Planta 183 40–50

    Google Scholar 

  46. J.J. Oosten ParticleVan R.T. Besford (1995) ArticleTitleSome Relationships between the Gas Exchange, Biochemistry and Molecular Biology of Photosynthesis during Leaf Development of Tomato Plants after Transfer to Different Carbon Dioxide Concentrations Plant Cell Environ. 18 1253–1266

    Google Scholar 

  47. M.A. Porter B. Grodzinski (1984) ArticleTitleAcclimation to High CO2 in Bean: Carbonic Anhydrase and Ribulose Bisphosphate Carboxylase Plant Physiol. 74 413–416

    Google Scholar 

  48. H. Nakano A. Makino T. Mae (1997) ArticleTitleThe Effect of Elevated Partial Pressures of CO2 on the Relationship between Photosynthetic Capacity and N Content in Rice Leaves Plant Physiol. 115 191–198

    Google Scholar 

  49. J.C. Theobald R.A.C. Mitchell M.A.J. Parry D.W. Lawlor (1998) ArticleTitleEstimating the Excess Investment in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Leaves of Spring Wheat Grown under Elevated CO2 Plant Physiol. 118 945–955

    Google Scholar 

  50. R.T. Besford L.J. Ludwig A.C. Withers (1990) ArticleTitleThe Greenhouse Effect: Acclimation of Tomato Plants Growing in High CO2, Photosynthesis and Ribulose-1,5-Bisphosphate Carboxylase Protein J. Exp. Bot. 41 925–931

    Google Scholar 

  51. K.E. Koch (1996) ArticleTitleCarbohydrate-Modulated Gene Expression in Plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 509–540

    Google Scholar 

  52. P.R. Hinkelton P.A. Jolliffe (1980) ArticleTitleAlterations in the Physiology of CO2 Exchange in Tomato Plants Grown in CO2-Enriched Atmospheres Can. J. Bot. 58 2181–2189

    Google Scholar 

  53. M.M. Peet S.C. Huber D.T. Patterson (1986) ArticleTitleAcclimation to High CO2 in Monoecious Cucumbers: 2. Carbon Exchange Rates, Enzyme Activities and Nutrient Concentrations Plant Physiol. 80 63–67

    Google Scholar 

  54. S. Yelle R.C. Beeson M.J. Trudel A. Gosselin (1989) ArticleTitleAcclimation of Two Tomato Species to High Atmospheric CO2. 2. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Phosphoenolpyruvate Carboxylase Plant Physiol. 90 1473–1477

    Google Scholar 

  55. N. Majeau J.R. Coleman (1996) ArticleTitleEffect of CO2 on Carbonic Anhydrase and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Expression in Pea Plant Physiol. 112 569–574

    Google Scholar 

  56. T. Cervigni F. Teofani C. Bassanelli (1971) ArticleTitleEffect of CO2 on Carbonic Anhydrase in Avena sativa and Zea mays Phytochemistry 10 2991–2994

    Google Scholar 

  57. C.W. Chang (1975) ArticleTitleCarbon Dioxide and Senescence in Cotton Plant Plant Physiol. 55 515–519

    Google Scholar 

  58. C.A. Raines P.R. Horsnell C. Holder J.C. Lloyd (1992) ArticleTitle Arabidopsis thaliana Carbonic Anhydrase: cDNA Sequence and Effect of CO2 on mRNA Levels Plant. Mol. Biol. 20 1143–1148

    Google Scholar 

  59. R.B. Kachru L. Anderson (1974) ArticleTitleChloroplast and Cytoplasmic Enzymes: 5. Pea-Leaf Carbonic Anhydrase Planta 118 235–240

    Google Scholar 

  60. M.R. Badger G.D. Price (1994) ArticleTitleThe Role of Carbonic Anhydrase in Photosynthesis Annu. Rev. Plant Physiol. Plant Mol. Biol. 45 369–392

    Google Scholar 

  61. L.K. Ignatova A.K. Romanova (1992) ArticleTitleParticipation of Carbonic Anhydrase in Inhibition of Photosynthesis in Pea Chloroplasts under CO2 Excess Fiziol. Rast. 39 711–717

    Google Scholar 

  62. N. Majeau M.A. Arnoldo J.R. Coleman (1994) ArticleTitleModification of Carbonic Anhydrase and Overproduction Constructs in Transgenic Tobacco Plant. Mol. Biol. 25 377–385

    Google Scholar 

  63. G.D. Price S. Caemmerer Particlevon J.R. Evans J.-W. Yu J. Lloyd V. Oja K. Harrison A. Gallagher (1994) ArticleTitleSpecific Reduction of Chloroplast Carbonic Anhydrase Activity by Antisense RNA in Transgenic Tobacco Plants Has a Minor Effect on Photosynthetic CO2 Assimilation Planta 193 310–340

    Google Scholar 

  64. N.A. Pronina S.I. Allakhverdiev E.V. Kupriyanova G.L. Klyachko-Gurvich V.V. Klimov (2002) ArticleTitleCarbonic Anhydrase in Subchloroplast Particles of Pea Plants Fiziol. Rast. 49 341–349

    Google Scholar 

  65. Romanova, A.K., Mudrik, V.A., Ignatova, L.K., Novichkova, N.S., and Ivanov, B.N., Symptoms of Initial Adaptation to the Increased Atmospheric CO2 Concentration in Sugar Beet, Tez. 5-go SDezda OFRR (Abst. 5th Congress Society Plant Physiol. Russia), Pensa, 2003, p. 330.

  66. Ignatova, L.K., Rudenko, N.N., Romanova, A.K., Nikonova, S.I., and Ivanov, B.N., Soluble and Membrane Bounded Carbonic Anhydrases in Pea Leaves and Effect of Atmospheric CO2 Content on Their Activity, Tez. 5-go SDezda (Abst. 5th Congress Society Plant Physiol. Russia), Pensa, 2003, pp. 45–46.

  67. S.C. Huber J.L. Huber (1992) ArticleTitleRole of Sucrose-Phosphate Synthase in Sucrose Metabolism in Leaves Plant Physiol. 99 1275–1278

    Google Scholar 

  68. J.J. Oosten ParticleVan D. Wilkins R.T. Besford (1994) ArticleTitleRegulation of the Expression of Photosynthetic Nuclear Genes by CO2 Is Mimicked by Regulation by Carbohydrates: A Mechanism for the Acclimation of Photosynthesis to High CO2? Plant Cell Environ. 17 913–923

    Google Scholar 

  69. E.A. Havir N.A. McHale (1989) ArticleTitleRegulation of Catalase in Leaves of Nicotiana sylvestris by High CO2 Plant Physiol. 89 952–957

    Google Scholar 

  70. I.E. Woodrow J.A. Berry (1988) ArticleTitleEnzymatic Regulation of Photosynthetic CO2 Fixation in C3 Plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 39 533–594

    Google Scholar 

  71. J.-C. Jang J. Sheen (1994) ArticleTitleSugar Sensing in Higher Plants Plant Cell 6 1665–1679 Occurrence Handle10.1105/tpc.6.11.1665 Occurrence Handle1:CAS:528:DyaK2MXitl2lsbY%3D Occurrence Handle7827498

    Article  CAS  PubMed  Google Scholar 

  72. A. Krapp W.P. Quick M. Stitt (1991) ArticleTitleRibuloso-1,5-Bisphosphate Carboxylase/Oxygenase, Other Calvin Cycle Enzymes and Chlorophyll Decrease when Glucose Is Supplied to Mature Spinach Leaves via the Transpiration Stream Planta 186 58–69 Occurrence Handle10.1007/BF00201498

    Article  Google Scholar 

  73. A. Krapp B. Hoffmann C. Schaefer M. Stitt (1993) ArticleTitleRegulation of the Expression of rbcS and Other Photosynthetic Genes by Carbohydrates: A Mechanism for the “Sink Regulation” of Photosynthesis Plant J. 3 817–828

    Google Scholar 

  74. T. Murashige F. Scoog (1962) ArticleTitleA Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Cultures Physiol. Plant. 15 473–496

    Google Scholar 

  75. J.-Ch. Jang P. Leon L. Zhou J. Sheen (1997) ArticleTitleHexokinase as a Sugar Sensor in Higher Plants Plant Cell 9 5–9 Occurrence Handle10.1105/tpc.9.1.5

    Article  Google Scholar 

  76. C. Dickinson T. Altabella M.J. Chrispeels (1991) ArticleTitleSlow Growth Phenotype of Transgenic Tomato Expressing Apoplastic Invertase Plant Physiol. 95 420–425

    Google Scholar 

  77. U. Sonnewald M. Brauer A. Schaewen Particlevon M. Stitt L. Willmitzer (1991) ArticleTitleTransgenic Tobacco Plants Expressing Yeast-Derived Invertase in the Cytosol, Vacuole, or Apoplast: A Powerful Tool for Studying Sucrose Metabolism and Sink/Source Interactions Plant J. 1 95–106

    Google Scholar 

  78. N. Dai A. Schaffer M. Petreikiv Y. Shanak Y. Giller K. Ratner A. Levine (1999) ArticleTitleOverexpression of Arabidopsis Hexokinase in Tomato Plant Inhibits Growth, Reduces Photosynthesis and Induces Rapid Senescence Plant Cell 11 1253–1266 Occurrence Handle10.1105/tpc.11.7.1253 Occurrence Handle1:CAS:528:DyaK1MXkvFertb4%3D Occurrence Handle10402427

    Article  CAS  PubMed  Google Scholar 

  79. S.C.M. Smeekens F. Rook (1997) ArticleTitleSugar Sensing and Sugar-Mediated Signal Transduction in Plants Plant Physiol. 115 7–13

    Google Scholar 

  80. C. Scharrenberger (1990) ArticleTitleCharacterization and Compartmentation, in Green Leaves, of Hexokinases with Different Specificities for Glucose, Fructose and Mannose and Nucleotide Triphosphates Planta 181 249–255

    Google Scholar 

  81. E.S. Sisler C. Wood (1988) ArticleTitleInteraction of Ethylene and CO2 Physiol. Plant. 73 440–444

    Google Scholar 

  82. B. Grodzinsky (1992) ArticleTitlePlant Nutrition and Growth Regulation by CO2 Enrichment BioScience 42 517–525

    Google Scholar 

  83. O.N. Kulaeva O.S. Prokoptseva (2004) ArticleTitleRecent Advances in the Study of Mechanisms of Phytohormone Action Biokhimiya 69 293–310

    Google Scholar 

  84. A. Miller Ch.-H. Tsai D. Hemphill M. Endres S. Rodermel M. Stalding (1997) ArticleTitleElevated CO2 Effects during Leaf Ontogeny Plant Physiol. 115 1195–1200

    Google Scholar 

  85. S.P. Long (1991) ArticleTitleModification of the Response of Photosynthetic Productivity to Rising Temperature by CO2 Concentrations: Has Its Importance Underestimated? Plant Cell Environ. 14 729–739

    Google Scholar 

  86. J.A. Bunce (2000) ArticleTitleAcclimation to Temperature of the Response of Photosynthesis to Increased Carbon Dioxide Concentration in Taraxanum officinale Photosynth. Res. 64 89–94

    Google Scholar 

  87. G.A. Alexandrov T. Oikava Y. Yamagata (2003) ArticleTitleClimate Dependence of the CO2 Fertilization Effect on Terrestrial Net Primary Production Tellus 55B 669–675

    Google Scholar 

  88. W.J. Arp (1991) ArticleTitleEffects of Source-Sink Relations on Photosynthetic Acclimation to Elevated CO2 Plant Cell Environ. 14 869–875

    Google Scholar 

  89. A.J. Rowland-Bamford J.T. Baker L.Y. Allen G. Bowes (1991) ArticleTitleAcclimation of Rice to Changing Atmospheric Carbon Dioxide Concentration Plant Cell Environ. 14 577–583

    Google Scholar 

  90. T. Martin O. Oswald I.A. Graham (2002) ArticleTitle Arabidopsis Seedlings Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon : Nitrogen Availability Plant Physiol. 128 472–481

    Google Scholar 

  91. N.R. Adam G.W. Wall B.A. Kimball P.J. Pinter R.L. LaMorte D.J. Hunsaker F.J. Adamsen T. Tompson A.D. Matthias S.W. Leavitt A.N. Webber (2000) ArticleTitleAcclimation Response of Spring Wheat in a Free-Air CO2 Enrichment (FACE) with Variable Soil Nitrogen Regimes: 1. Leaf Position and Phenology Determine Acclimation Response Photosynth. Res. 66 65–77

    Google Scholar 

  92. T. Brooks G.W. Wall P.J. Pinter B.A. Kimball R.L. LaMorte S.W. Leavitt A.D. Matthias F.J. Adamsen D.J. Hunsaker A.N. Webber (2000) ArticleTitleAcclimation Response of Spring Wheat in a Free-Air CO2 Enrichment (FACE) Atmosphere with Variable Soil Nitrogen Regimes: 3. Canopy Architecture and Gas Exchange Photosynth. Res. 66 97–108

    Google Scholar 

  93. A.H. Webber G.-Y. Nie S.P. Long (1994) ArticleTitleAcclimation of Photosynthetic Proteins to Rising Atmospheric CO2 Photosynth. Res. 39 413–425

    Google Scholar 

  94. V.A. Mudrik S.N. Tsyuryupa N.S. Novichkova A.K. Romanova (2001) ArticleTitleEffect of Elevated Nitrate Dose on Photosynthesis of Sugar Beet Grown under Doubled CO2 Concentration in Atmosphere Vestn. Bashkirskogo Univ. 2 63–65

    Google Scholar 

  95. V. Stitt A. Krapp (1999) ArticleTitleThe Interaction between Elevated Carbon Dioxide and Nitrogen Nutrition: The Physiological and Molecular Background Plant Cell Environ. 22 583–621

    Google Scholar 

  96. B.R. Fondy D.R. Geiger J.C. Servaites (1989) ArticleTitlePhotosynthesis, Carbohydrate Metabolism and Export in Beta vulgaris L. and Phaseolus vulgaris L. during Square and Sinusoidal Light Regimes Plant Physiol. 89 396–402

    Google Scholar 

  97. J.P. Conroy O. Ghannoum D. Jutla G. Rogers S. Seneweera (1998) Plant Responses to Elevated CO2 and Climate Stress L.J. deKok I. Stulen (Eds) Responses of Plant Metabolism to Air Pollution and Global Change Backhuys Leiden 181–191

    Google Scholar 

  98. R. Baçhzek-Kwinta J. Kósielniak (2003) ArticleTitleAnti-Oxidative Effect of Elevated CO2 Concentration in the Air on Maize Hybrids Subjected to Severe Chill Photosynthetica 41 161–165

    Google Scholar 

  99. J. Pospišilová J. Catský (1999) ArticleTitleDevelopment of Water Stress under Increased Atmospheric CO2 Concentration Photosynthetica 42 1–24

    Google Scholar 

  100. N.V. Pukhal’skaya L.V. Osipova (1999) ArticleTitleDrought Resistance of Wheat Plants in an Atmosphere Enriched with CO2 Fiziol. Rast. 46 259–267

    Google Scholar 

  101. A.T. Mokronosov (1999) Global Photosynthesis and Biodiversity of Vegetation G.A. Zavarzin (Eds) Krugovorot ugleroda na territorii Rossii Izd-vo NTP “Global’nye izmeneniya prirodnoi sredy i klimata” Moscow 19–62

    Google Scholar 

  102. G.J. Retallack (2001) ArticleTitleA 300-Million-Year Record of Atmospheric Carbon Dioxide from Fossil Plant Cuticles Nature 411 287–290 Occurrence Handle10.1038/35077041 Occurrence Handle1:CAS:528:DC%2BD3MXjvF2qtr0%3D Occurrence Handle11357126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 129–145.

Original Russian Text Copyright © 2005 by Romanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanova, A.K. Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO2 . Russ J Plant Physiol 52, 112–126 (2005). https://doi.org/10.1007/s11183-005-0016-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0016-7

Keywords

Navigation