Skip to main content
Log in

Simulation of Polarized Solar Radiative Transfer Above the Ocean Accounting Primary Production Indicators of Its Surface Layer

  • Published:
Russian Physics Journal Aims and scope

An approach is proposed that makes it possible to simulate the polarized solar radiative transfer above the ocean taking into account the primary production indicators of its surface layer and wind-driven waves using the Monte Carlo method. The dependence of the ocean albedo calculated in accordance with this approach on the illumination conditions, wind-driven sea surface waves, and primary production characteristics is studied. The key features of the angular distribution of radiance at the top of the atmosphere under different conditions of the numerical experiment are discussed. The errors in calculating the Stokes vector and the degree of polarization induced by the neglect of light interaction with the near-surface water layer have been estimated by solving the vector radiative transfer equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Kattawar and Ch. N. Adams, Proc. SPIE, 1302 (1990); DOI: https://doi.org/10.1117/12.21431.

  2. C. Cox and W. Munk, J. Marine Res., 13, 198–227 (1954).

    Google Scholar 

  3. B. A. Kargin and S. M. Prigarin, Atm. Ocean Opt., 5, No. 3, 186–190 (1992).

    Google Scholar 

  4. S. V. Sheberstov, S. V. Vazyulya, and O. V. Kopelevich, Sovr. Probl. DZZ Kosm., 1, No. 6, 234–242 (2009).

    Google Scholar 

  5. P. Zhai, G. W. Kattawar, and P. Yang, Appl. Opt., 47, No. 8, 1037–1047 (2008).

    Article  ADS  Google Scholar 

  6. S. Y. Kotchenova and E. F. Vermote, Appl. Opt., 46, No. 20, 4455–4464 (2007).

    Article  ADS  Google Scholar 

  7. C. Emde, R. Buras-Schnell, A. Kylling, et al., Geosci. Model Dev., 9, 1647–1672 (2016).

    Article  ADS  Google Scholar 

  8. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., Monte Carlo Method in Atmospheric Optics [in Russian], Novosibirsk, Nauka (1976).

    Google Scholar 

  9. T. V. Russkova and K. A. Shmirko, Proc. SPIE, 11560, 115601O (2020).

    Google Scholar 

  10. R. R. Bidigare, R. C. Smith, K. S. Baker, and I. Marra, Global Biogeochem. Cycles, 1, 171–186 (1987).

    Article  ADS  Google Scholar 

  11. M. A. Warren, Remote Sens. Environm., 225, 267–289 (2019).

    Article  ADS  Google Scholar 

  12. M. I. Mishchenko and L. D. Travis, J. Geophys. Res., 102, No. D14, 16989–17013 (1997).

    Article  ADS  Google Scholar 

  13. P. Koepke, Appl. Opt., 23, No. 11, 1816–1824 (1984).

    Article  ADS  Google Scholar 

  14. E. C. Monahan and I. O’ Muircheartaigh, J. Phys. Oceanogr., 10, No. 12, 2094–2099 (1980).

  15. C. Cox and W. Munk, J. Marine Res., 14, 63–78 (1955).

    Google Scholar 

  16. C. Cox and W. Munk, J. Opt. Soc. Am., 44, 838–850 (1954).

    Article  ADS  Google Scholar 

  17. Z. Ahmad and R. S. Fraser, J. Atmos. Sci., 39, No. 3, 656–665 (1982).

    Article  ADS  Google Scholar 

  18. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley, New York (1985).

    Google Scholar 

  19. N. E. Lebedev, V. V. Pustovoitenko, K. V. Pokazeev, and O. N. Melnikova, Sovr. Probl. DZZ Kosm., 11, No. 3, 310–320 (2014).

    Google Scholar 

  20. R. W. Austin and T. J. Petzold, Opt. Eng., 25,471–479 (1986).

    Article  ADS  Google Scholar 

  21. A. Morel and L. Prieur, Limnol. Oceanogr., 22, No. 4, 709–722 (1977).

    Article  ADS  Google Scholar 

  22. A. Morel, J. Geophys. Res., 93, No. C9, 10749–10768 (1988).

    Article  ADS  Google Scholar 

  23. K. V. Pokazeev and T. O. Chaplin , Oceanology. Ocean Optics [in Russian], YouRight, Moscow (2021).

  24. G. M. Hale and M. R. Querry, Appl. Opt., 12, No. 3, 555–563 (1973).

    Article  ADS  Google Scholar 

  25. H. V. Sverdrup, M. W. Johnson, and R. H. Fleming, The Ocean, Prentice-Hall, Inc., Englewood Cliffs (1942).

    Google Scholar 

  26. H. J. McLellan, Elements of Physical Oceanography, Pergamon Press, New York (1965).

    Google Scholar 

  27. D. Friedman, Appl. Opt., 8, No. 10, 2073–2078 (1969).

    Article  ADS  Google Scholar 

  28. N. G. Erlov, Sea Optics [in Russian], Gidrometeoizdat, Leningrad (1980).

    Google Scholar 

  29. M. Hess, P. Koepke, and I. Schult, Bull. Am. Meteor. Soc., 79, No. 5, 831–844 (1998).

    Article  ADS  Google Scholar 

  30. A. Smirnov, B. N. Holben, Y. J. Kaufman, et al., J. Atm. Sci., 59, 501–523 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Russkova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 68–78, October 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russkova, T.V. Simulation of Polarized Solar Radiative Transfer Above the Ocean Accounting Primary Production Indicators of Its Surface Layer. Russ Phys J 65, 1681–1691 (2023). https://doi.org/10.1007/s11182-023-02818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02818-2

Keywords

Navigation