Skip to main content
Log in

Deformable Material as a Nonlinear Active Medium

  • Published:
Russian Physics Journal Aims and scope

The regularities of the formation of localized plastic flow autowaves in metals upon Lüders and Portevin–Le Chatelier deformations are considered taking into account the difference in the microscopic plastic flow mechanisms of these phenomena. Regularities in the development of these effects are studied. It has been established that the features of deformation characteristic for them are determined by the difference in the properties of the active media formed in the materials under study upon plastic deformation. The conditions for generating a switching autowave under Lüders deformation and an excitation autowave for the Portevin–Le Chatelier effect in deformable materials are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford (1950).

    MATH  Google Scholar 

  2. D. Hull and D. J. Bacon, Introduction in Dislocations, Elsevier, Oxford (2011).

    Book  Google Scholar 

  3. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation, Springer, Berlin (2010).

    Book  Google Scholar 

  4. A. Seeger and W. Frank, in: Nonlinear Phenomena in Material Science, L. P. Kubin and G. Martin, eds., Trans Tech Publications, New York (1987), pp. 125−137.

    Google Scholar 

  5. H. Haken, Information and Self-Organization: A Macroscopic Approach to Complex Systems, Springer (2006).

  6. G. Nikolis and I. Prigogine, Exploring Complexity, W. H. Freeman & Co., New York (1989).

    Google Scholar 

  7. L. B. Zuev, Autowave plasticity. Localization and Collective Modes [in Russian], Fizmatlit, Moscow (2018).

    Google Scholar 

  8. L. B. Zuev and Yu. A. Khon, Fizich. Mesomekh., 24, No. 6, 5−14 (2021).

    Google Scholar 

  9. L. B. Zuev, S. A. Barannikova, V. I. Danilov, and V. V. Gorbatenko, Prog. Phys. Met., 22, No. 1, 3−57 (2021); DOI: https://doi.org/10.15407/ufm.22.01.003.

    Article  Google Scholar 

  10. V. A. Davydov, N. V. Davydov, V. G. Morozov, et al., Cond. Matter Phys., 7, No. 3. 565−578 (2004); DOI: https://doi.org/10.5488/CMP.7.3.56.

    Article  Google Scholar 

  11. J. Pelleg, Mechanical Properties of Materials, Springer, Dordrecht (2013).

    Book  Google Scholar 

  12. A. A. Shibkov, M. F. Gasanov, M. A. Zheltov, et al., Int. J. Plast., 86, No. 8, 37−55 (2016); DOI: https://doi.org/10.1016/j.ijplas.2016.07.014.

    Article  Google Scholar 

  13. M. A. Lebyodkin, D. A. Zhemchuzhnikova, T. A. Lebedkina, and E. C. Aifantis, Res. Phys., 12, No. 12, 867−869 (2019); DOI: https://doi.org/10.1016/j.rinp2018.12.067.

    Article  Google Scholar 

  14. L. B. Zuev, V. V. Gorbatenko, and L. V. Danilova, Russ. Phys. J., 64, No. 9, 1666–1675 (2021).

    Article  Google Scholar 

  15. V. I. Danilov, L. B. Zuev, V. V. Gorbatenko, et al., Tech. Phys., 66, No. 2, 255−262 (2021); DOI: https://doi.org/10.1134/S106378422020080.

    Article  Google Scholar 

  16. T. Y. Thomas, Plastic Flow and Fracture in Solids, Acedemic Press, New York (1961).

    MATH  Google Scholar 

  17. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity, Elsevier, Oxford (2003).

    Google Scholar 

  18. T. Suzuki, X. Yoshinaga, and S. Takeuti, Dislocation Dynamics and Plasticity [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  19. A. Yu. Loskutov and A. S. Mikhailov, Principles of Theory of Complex Systems [in Russian], R&C Dynamics, Moscow; Izghevsk (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 89–97, February, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B., Danilov, V.I., Danilova, L.V. et al. Deformable Material as a Nonlinear Active Medium. Russ Phys J 65, 294–302 (2022). https://doi.org/10.1007/s11182-022-02635-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02635-z

Keywords

Navigation