Skip to main content
Log in

Viscoelastic Deformation and Fracture of Porous Nickel Titanium after Tension and Cyclic Bending

  • Published:
Russian Physics Journal Aims and scope

The paper deals with the deformation curves and fatigue tests of the porous nickel–titanium (NiTi) alloy produced with self-propagating high-temperature synthesis. Deformation curves obtained for tension and three-point bending of porous NiTi plates demonstrate their viscoelastic deformation due to the austenite-to-martensite phase transformation. Scanning electron microscopy observations of the fractured surface show the regions of quasi-brittle fracture of martensite and ductile fracture of austenite. Brittle fracture is observed for nonmetallic inclusions and the porous structure coating of the intermetallic compound. Fatigue tests show that the brittle phases and inclusions have no critical negative effect on the strain and fatigue properties of the NiTi alloy. It is determined that 70% of the porous alloy specimens withstand 106 cyclic bending owing to the reversible austenite-martensite phase transformation in the parent phase which is one the components of the multi-phase porous alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Gorbunova, O. I. Krivosheina, and I. V. Zapuskalov, Bull. Siberian Med., 10, No. 4, 11–14 (2011).

    Article  Google Scholar 

  2. A. S. Stofin, et al., Meditsinskii vestnik Severnogo Kavkaza, 12, No. 3, 281–284 (2017).

    Google Scholar 

  3. A. I. Potekaev, et al., Inorg. Mater.: Appl. Res., 2, No. 4, 387 (2011).

    Article  Google Scholar 

  4. A. I. Potekaev, A. A. Klopotov, E. S. Marchenko, et al., Russ. Phys. J., 60, No. 9, 1577–1585 (2018).

    Article  Google Scholar 

  5. J. H. Chen and W. S. Luo, Micromachines, 8, No. 7, 206 (2017).

    Article  Google Scholar 

  6. V. E. Gyunter, et al., Tech. Phys. Lett., 44, No. 9, 811–813 (2018).

    Article  ADS  Google Scholar 

  7. Y. Yasenchuk, et al., Materials, 12, No. 15, 2405 (2019).

    Article  ADS  Google Scholar 

  8. V. A. Mikushina, et al., AIP Conf. Proc., 2051, No. 1, 020192 (2018).

    Article  Google Scholar 

  9. S. Yue, R. M. Pilliar, and G. C. Weatherly, J. Biomed. Mater. Res., 18, No. 9, 1043–1058 (1984).

    Article  Google Scholar 

  10. A. Falkowska and A. Seweryn, Mater. Sci., 51, No. 2, 200–207 (2015).

    Article  Google Scholar 

  11. Y. H. Hsu, I. G. Turner, and A. W. Miles, JMSM, 18, No. 12, 2251–2256 (2007).

    Google Scholar 

  12. D. Hoey and D. Taylor, Acta Biomater., 5, No. 2, 719–726 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Marchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 125–130, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenko, E.S., Yasenchuk, Y.F., Baigonakova, G.A. et al. Viscoelastic Deformation and Fracture of Porous Nickel Titanium after Tension and Cyclic Bending. Russ Phys J 63, 1243–1248 (2020). https://doi.org/10.1007/s11182-020-02152-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02152-x

Keywords

Navigation