Skip to main content

Advertisement

Log in

Synthesis of Single-Layer ZrN-Coatings Using Vacuum-Arc Plasma-Assisted Deposition with Plasma Flow Filtering

  • Published:
Russian Physics Journal Aims and scope

The coatings based on ZrN are formed by the vacuum-arc plasma-assisted process under the conditions of plasma filtering from the droplet phase. A comprehensive investigation of the coating properties, elemental and phase compositions, and structure is performed by the methods of present-day materials science. The modes of deposition, at which the resulting coatings exhibit the lowest roughness (0.03 μm), the highest hardness (up to 30.5 GPa), a relatively low friction coefficient (0.39), and a low wear parameter (up to 2.2·10–6 mm3/(N·m)), are determined. Using the X-ray diffraction data, it is identified that the coatings consist of ZrN-crystallites with a cubic-lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andreev, L. P. Sablev, V. M. Shulaev, and S. N. Grigoriev, Vacuum-Arc Facilities and Coatings [in Russian], NNC KHFTI, Kharkov (2005).

  2. O. V. Krysina, Yu. F. Ivanov, I. M. Goncharenko, et al., High Temp. Mater. Process., 17(2–3), 153–160 (2013).

    Article  Google Scholar 

  3. Yu. F. Ivanov, N. N. Koval, O. V. Krysina, et al., Surf. Coat. Technol., 207, 430–434 (2012).

    Article  Google Scholar 

  4. V. A. Barvinok and V. I. Bogdanovich, Physical Foundations and Mathematical Modeling of Processes of Vacuum Ion-Plasma Deposition [in Russian], Mashinostroyeniye, Moscow (1999).

  5. A. Anders, Cathodic Arcs: From Fractal Sports to Energetic Condensation, Springer, N. Y. (2008).

  6. D. S. Aksenov, I. I. Aksenov, and V. E. Strelnitskii, Vopr. Atom. Nauki i Tekhn., No. 2, 190–202 (2007).

  7. L. G. Vintizenko, S. V. Grigoriev, N. N. Koval, et al., Russ. Phys. J., 44, No. 9, 927–936 (2001).

    Article  Google Scholar 

  8. O. V. Sobol’, A. A. Andreev, V. F. Gorban’, et al., Tech. Phys., 86, Iss. 7, 100–103 (2016).

  9. Yu. S. Kotov and, G. Ya. Belyaev, Russian-Belorussian University Bulletin [in Russian], No. 2(39), 63–70 (2013).

  10. A. D. Pogrebnyak, O. V. Sobol’, et al., Pis’ma ZhTF, 35, Iss. 19, 103–110 (2009).

  11. S. Ya., Betsofen, L. M. Petrov, A. A. Ilyin, et al., Poverhnost. Rentg., Sinhrotr., Neytron. Issled., No. 1, 39–45 (2004).

  12. A. A. Kalushevich, N. N. Koval, V. V. Denisov, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 55, No. 12/3, 118–122 (2012).

  13. O. V. Krysina, N. N. Koval, I. V. Lopatin, et al., J. Phys.: Conf. Ser., 669, 012032 (2016).

    Google Scholar 

  14. A. I. Dodonov and V. M. Bashkov, Generation of Electric-Arc Plasma in a Curvilinear Plasma Guide and Deposition of a Coating on a Substrate, RF Patent of Invention, RU 97/00106 (04.04.1997).

  15. V. V. Shugurov, N. N. Koval, N. A. Prokopenko, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 9/2, 283–286 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Krysina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 106–111, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krysina, O.V., Shugurov, V.V., Prokopenko, N.A. et al. Synthesis of Single-Layer ZrN-Coatings Using Vacuum-Arc Plasma-Assisted Deposition with Plasma Flow Filtering. Russ Phys J 62, 848–853 (2019). https://doi.org/10.1007/s11182-019-01786-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01786-w

Keywords

Navigation