Skip to main content
Log in

Energy Spectrum and Optical Properties of Single-Wall Carbon Nanotubes

  • Published:
Russian Physics Journal Aims and scope

The energy spectrum and the optical absorption spectra of single-wall carbon nanotubes with chiralities (5,5), (10,0), (9,0), (12,0), and (15,0) is calculated within the framework of the Shubin–Wonsowskii–Hubbard model taking into account distant (adjacent to the nearest) interstitial electron transfer. It is demonstrated that all of them, irrespective of the chirality, are narrow-gap semiconductors with a gap of ~0.1 eV that coincides with the available experimental data. The optical absorption spectra are also in good agreement with the experimentally measured spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. É. G. Rakov, Nanotubes and Fullerenes [in Russian], Fizmatkniga, Moscow (2006).

    Google Scholar 

  2. R. Satio, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev., B46, 1804 (1992).

    ADS  Google Scholar 

  3. M. S. Dresselhaus and G. Dresselhaus, Carbon, 33, 883 (1995).

    Article  Google Scholar 

  4. N. Hamad, S. Sawada, and A. Oshiyama, Phys. Rev. Lett., 68, 1579 (1992).

    Article  ADS  Google Scholar 

  5. P. R. Wallace, Phys. Rev., No. 71, 622 (1947).

  6. A. V. Eletskii, Usp. Fiz. Nauk, 179, No. 3, 225 (2009).

    Article  Google Scholar 

  7. T. O. Wehling, E. Sasioglu, C. Friedrich, et al., Phys. Rev. Lett., 106, 236805 (2011).

    Article  ADS  Google Scholar 

  8. T. É. Arutyunov, G. I. Mironov, and A. I. Murzashev, Fiz. Tverd. Tela, 54, 1797 (2012).

    Google Scholar 

  9. A. I. Murzashev and E. O. Shadrin, Fiz. Tverd. Tela, 54, 2176 (2012).

    Google Scholar 

  10. C. L. Kane, E. J. Melel, R. S. Lee, et al., Europhys. Lett., 41, 683 (1998).

    Article  ADS  Google Scholar 

  11. H. W. Ch. Postma, M. de Jonge, Z. Yao, and C. Dekker, Phys. Rev. B62, R10653 (2000).

    Article  ADS  Google Scholar 

  12. V. Skákalová, A. B. Kaiser, Y.-S. Woo, and S. Roth, Phys. Rev., B74, 085403 (2006).

    Article  ADS  Google Scholar 

  13. M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, Science, No. 292, 702 (2001).

  14. S. P. Schubin and S. V. Wonsowskii, Proc. Roy. Soc., A145, 159 (1934).

    Article  ADS  Google Scholar 

  15. J. Hubbard, Proc. Roy. Soc., A276, 238 (1963).

    Article  ADS  Google Scholar 

  16. V. V. Loskutov, G. I. Mironov, and R. R. Nigmatulin, Fiz. Nizk. Temp., 26, 282 (1997).

    Google Scholar 

  17. R. R. Nigmatulin, A. A. Hamzin, and I. I. Popov, Zh. Eksp. Teor. Fiz., 141, 1 (2012).

    Google Scholar 

  18. G. I. Mironov and A. I. Murzashev, Fiz. Tverd. Tela, 53, 2273 (2011).

    Google Scholar 

  19. A. I. Murzashev, Russ. Phys. J., 55, No. 5, 524 (2012).

    Article  Google Scholar 

  20. G. I. Mironov, Fiz. Tverd. Tela, 49, 527 (2007).

    Google Scholar 

  21. S. V. Tyablikov, Methods of the Quantum Theory of Magnetism [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  22. H. Kataura, Y. Kumazawa, I. Umezu, et al., Synthetic Metals, 103, 2555 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Murzashev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 62–69, July, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murzashev, A.I., Shadrin, E.O. Energy Spectrum and Optical Properties of Single-Wall Carbon Nanotubes. Russ Phys J 56, 791–800 (2013). https://doi.org/10.1007/s11182-013-0101-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0101-x

Keywords

Navigation