Skip to main content
Log in

Sexual Reproduction of Insects Is Regulated by Cytoplasmic Bacteria

  • Materials from the Conference Dedicated to the Centenary of B.L. Astaurov
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The effects have been considered that the intracellular symbiotic α-proteobacteria Wolbachia pipientis induces in its hosts, such as insects and other arthropods: cytoplasmic incompatibility upon mating, feminization, parthenogenesis, and androcide. Specific features of the bacterium genome and possible mechanisms of its action on hosts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anthony, K.G., Sherburne, C., Sherburne, R., and Frost, L.S., The Role of the Pilus in Recipient Cell Recognition during Bacterial Conjugation Mediated by F-Like Plasmids, Mol. Microbiol., 1994, vol. 13, pp. 939–953.

    PubMed  Google Scholar 

  • Bandi, C., Anderson, T.J.C., Genchi, C., and Blaxter, M.L., Phylogeny of Wolbachia-Like Bacteria in Filarial Nematodes, Proc. Roy. Soc. London B, 1998, vol. 265, pp. 2407–2413.

    Article  Google Scholar 

  • Bork, P., Hundreds of Ankyrin-Like Repeats in Functionally Diverse Proteins: Mobile Modules That Cross Phyla Horizontally? Proteins, 1993, vol. 17, pp. 363–374.

    Article  PubMed  Google Scholar 

  • Braig, H.R., Zhou, W., Dobson, S.L., and O’Neill, S.L., Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis, J. Bacteriol., 1998, vol. 180, pp. 2373–2378.

    PubMed  Google Scholar 

  • Bressac, C. and Rousset, F., The Reproductive Incompatibility System in Drosophila simulans: Dapi-Staining Analysis of the Wolbachia Symbionts in Sperm Cysts, J. Invert. Pathol., 1993, vol. 61, pp. 226–230.

    Article  Google Scholar 

  • Buchanan, S.K., Smith, B.S., Venkatramani, L., et al., Crystal Structure of the Outer Membrane Active Transporter FepA from Escherichia coli, Nat. Struct. Biol., 1999, vol. 6, pp. 56–63.

    Article  PubMed  Google Scholar 

  • Callaini, G., Dallai, R., and Riparbelli, M.G., Wolbachia-Induced Delay of Paternal Chromatin Condensation Does Not Prevent Maternal Chromosomes from Entering Anaphase in Incompatible Crosses of Drosophila simulans, J. Cell Sci., 1997, vol. 110, pp. 271–280.

    PubMed  Google Scholar 

  • Cao, T.B. and Saier, M.H., Jr., Conjugal Type IV Macromolecular Transfer Systems of Gram-Negative Bacteria: Organismal Distribution, Structural Constraints and Evolutionary Conclusions, Microbiology, 2001, vol. 147, pp. 3201–3214.

    PubMed  Google Scholar 

  • Caturegli, P., Asanovich, K.M., Walls, J.J., et al., AnkA: An Ehrlichia phagocytophila Group Gene Encoding a Cytoplasmic Protein Antigen with Ankyrin Repeats, Infect. Immun., 2000, vol. 68, pp. 5277–5283.

    Article  PubMed  Google Scholar 

  • Chirgwin, S.R., Coleman, S.U., Porthouse, K.H., et al., Removal of Wolbachia from Brugia pahangi Is Closely Linked to Worm Death and Fecundity but Does Not Result in Altered Lymphatic Lesion Formation in Mongolian Gerbils (Meriones unguiculatus), Infect. Immunol., 2003, vol. 71, pp. 6986–6994.

    Article  Google Scholar 

  • Dodd, D.M.B., Reproductive Isolation as a Consequence of Adaptive Divergence in Drosophila pseudoobscura, Evolution, 1989, vol. 43, pp. 1308–1311.

    Google Scholar 

  • Dunny, G.M., Antiporta, M.H., and Hirt, H., Peptide Pheromone-Induced Transfer of Plasmid PCF10 in Enterococcus faecalis: Probing the Genetic and Molecular Basis for Specificity of the Pheromone Response, Peptides, 2001, vol. 22, pp. 1529–1539.

    Article  PubMed  Google Scholar 

  • Elfring, L.K., Axton, J.M., Fenger, D.D., et al., Drosophila PLUTONIUM Protein Is a Specialized Cell Cycle Regulator Required at the Onset of Embryogenesis, Mol. Biol. Cell, 1997, vol. 8, pp. 583–593.

    PubMed  Google Scholar 

  • Fujii, Y., Kageyama, D., Hoshizaki, S., et al., Transfection of Wolbachia in Lepidoptera: The Feminizer of the Adzuki Bean Borer Ostrinia scapulalis Causes Male Killing in the Mediterranean Flour Moth Ephestia kuehniella, Proc. Roy. Soc. London B, 2001, vol. 268, pp. 855–859.

    Article  Google Scholar 

  • Goryacheva, I.I., Bacteria of the Genus Wolbachia Are Reproductive Parasites of Arthropods, Usp. Sovrem. Biol., 2004, vol. 124, no.3, pp. 246–259.

    Google Scholar 

  • Heath, B.D., Butcher, R.D., Whitfield, W.G., and Hubbard, S.F., Horizontal Transfer of Wolbachia between Phylogenetically Distant Insect Species by a Naturally Occurring Mechanism, Curr. Biol., 1999, vol. 9, pp. 313–316.

    Article  PubMed  Google Scholar 

  • Hryniewicz-Jankowska, A., Czogalla, A., Bok, E., and Sikorsk, A.F., Ankyrins, Multifunctional Proteins Involved in Many Cellular Pathways, Folia Histochem. Cytobiol., 2002, vol. 40, pp. 239–249.

    PubMed  Google Scholar 

  • Hurst, G.D., Johnson, A.P., Schulenburg, J.H., and Fuyama, Y., Male-Killing Wolbachia in Drosophila: A Temperature-Sensitive Trait with a Threshold Bacterial Density, Genetics, 2000, vol. 156, pp. 699–709.

    PubMed  Google Scholar 

  • Hwang, H.H. and Gelvin, S.B., Plant Proteins That Interact with VirB2, the Agrobacterium tumefaciens Pilin Protein, Mediate Plant Transformation, Plant Cell, 2004, vol. 16, pp. 3148–3167.

    Article  PubMed  Google Scholar 

  • Jiggins, F.M., Hurst, G.D.D., and Majerus, M.E.N., Sex Ratio Distortion in Acraea encedon Is Caused by a Male-Killing Bacterium, Heredity, 1998, vol. 81, pp. 87–91.

    Article  Google Scholar 

  • Jiggins, F.M., Hurst, G.D., and Yang, Z., Host-Symbiont Conflicts: Positive Selection on an Outer Membrane Protein of Parasitic but Not Mutualistic Rickettsiaceae, Mol. Biol. Evol., 2002, vol. 19, pp. 1341–1349.

    PubMed  Google Scholar 

  • Juchault, P., Rigaud, T., and Mocquard, J.P., Evolution of Sex-Determining Mechanisms in a Wild Population of Armadillidium vulgare: Competition between Two Feminizing Parasitic Sex Factors, Heredity, 1992, vol. 69, pp. 382–390.

    Google Scholar 

  • Kose, H. and Karr, T.L., Organization of Wolbachia pipientis in the Drosophila Fertilized Egg and Embryo Revealed by Anti-Wolbachia Monoclonal Antibody, Mech. Devel., 1995, vol. 51, pp. 275–288.

    Article  Google Scholar 

  • LeGrand, J.-J., LeGrand-Hamelin, E., and Juchault, P., Sex Determination in Crustacea, Biol. Rev., 1987, vol. 62, pp. 439–470.

    Article  Google Scholar 

  • Llosa, M., Gomis-Ruth, F.X., Coll, M., and de la Cruz, F., Bacterial Conjugation: A Two-Step Mechanism for DNA Transport, Mol. Microbiol., 2002, vol. 45, pp. 1–8.

    Article  PubMed  Google Scholar 

  • Llosa, M., Zunzunegui, S., and de la Cruz, F., Conjugative Coupling Proteins Interact with Cognate and Heterologous VirB10-Like Proteins While Exhibiting Specificity for Cognate Relaxosomes, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 10 465–10 470.

    Article  Google Scholar 

  • Maqueda, M., Quirants, R., Martin, I., et al., Chemical Signals in Gram-Positive Bacteria: The Sex-Pheromone System in Enterococcus faecalis, Microbiologia, 1997, vol. 13, pp. 23–36.

    PubMed  Google Scholar 

  • Masui, S., Sasaki, T., and Ishikawa, H., Genes for the Type IV Secretion System in an Intracellular Symbiont, Wolbachia, a Causative Agent of Various Sexual Alterations in Arthropods, J. Bacteriol., 2000, vol. 182, pp. 6529–6531.

    Article  PubMed  Google Scholar 

  • Masui, S., Kuroiwa, H., Sasaki, T., et al., Bacteriophage WO and Virus-Like Particles in Wolbachia, an Endosymbiont of Arthropods, Biochem. Biophys. Res. Commun., 2001, vol. 283, pp. 1099–1104.

    Article  PubMed  Google Scholar 

  • Noda, H., Miyoshi, T., and Koizumi, Y., In vitro Cultivation of Wolbachia in Insect and Mammalian Cell Lines, In Vitro Cell Devel. Biol. Anim., 2002, vol. 38, pp. 423–427.

    Article  Google Scholar 

  • Poinsot, D. and Mercot, H., Wolbachia Infection in Drosophila simulans: Does the Female Host Bear a Physiological Cost, Evolution, 1997, vol. 51, pp. 180–186.

    Google Scholar 

  • Ratner, V.A. and Vasilyeva, L.A., Mobile Genetic Elements (MGE) and Evolution of Genomes, Sovremennye problemy teorii evolyutsii (Currrent Problems of the Theory of Evolution), Moscow: Nauka, 1993, pp. 43–59.

    Google Scholar 

  • Richardson, P.M., Holmes, W.P., and Saul, G.B., The Effect of Tetracycline on Reciprocal Cross Incompatibility in Mormoniella [=Nasonia] vitripennis, J. Invert. Pathol., 1987, vol. 50, pp. 176–183.

    Article  Google Scholar 

  • Rousset, F., Bouchon, D., Pintureau, B., et al., Wolbachia Endosymbionts Responsible for Various Alterations of Sexuality in Arthropods, B, 1992, vol. 250, pp. 91–98.

    Google Scholar 

  • Sasaki, T., Kubo, T., and Ishikawa, H., Interspecific Transfer of Wolbachia between Two Lepidopteran Insects Expressing Cytoplasmic Incompatibility: A Wolbachia Variant Naturally Infecting Cadra cautella Causes Male Killing in Ephestia kuehniella, Genetics, 2002, vol. 162, pp. 1313–1319.

    PubMed  Google Scholar 

  • Shestakov, S.V., Role of Horizontal Gene Transfer in Evolution, Teor. Seminar Geologov i Biologov Proiskhozhdenie Zhivykh Sistem (Theoretical Seminar of Geologists and Biologists “Origin of Living Systems”), Barnaul, 2003, pp. 15–20.

  • Shohat, G., Spivak-Kroizman, T., Eisenstein, M., and Kimchi, A., The Regulation of Death-Associated Protein (DAP) Kinase in Apoptosis, Eur. Cytokine Netw., 2002, vol. 13, pp. 398–400.

    PubMed  Google Scholar 

  • Spudich, G.M., Fernandez, D., Zhou, Z.-R., and Christie, P.J., Intermolecular Disulfide Bonds Stabilize VirB7 Homodimers and VirB7/VirB9 Heterodimers during Biogenesis of the Agrobacterium tumefaciens T-Complex Transport Apparatus, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 7512–7517.

    Article  PubMed  Google Scholar 

  • Stein, M., Rappuoli, R., and Covacci, A., Tyrosine Phosphorylation of the Helicobacter pylori CagA Antigen after CagA-Driven Host Cell Translocation, Proc. Natl. Acad. Sci. USA2000, vol. 97, pp. 1263–1268.

  • Stouthamer, R. and Kazmer, D.J., Cytogenetics of Microbe-Associated Parthenogenesis and Its Consequences for Gene Flow in Trichogramma Wasps, Heredity, 1994, vol. 73, pp. 317–327.

    Google Scholar 

  • Stouthamer, R., Breeuwer, J.A.J., Luck, R.F., and Werren, J.H., Molecular Identification of Microorganisms Associated with Parthenogenesis, Nature, 1993, vol. 361, pp. 66–68.

    Article  PubMed  Google Scholar 

  • Stouthamer, R., Breeuwer, J.A.J., and Hurst, G.D.D., Wolbachia pipientis: Microbial Manipulator of Arthropod Reproduction, Annu. Rev. Microbiol., 1999, vol. 53, pp. 71–102.

    Article  PubMed  Google Scholar 

  • Tram, U. and Sullivan, W., Role of Delayed Nuclear Envelope Breakdown and Mitosis in Wolbachia-Induced Cytoplasmic Incompatibility, Science, 2002, vol. 296, pp. 1124–1126.

    Article  PubMed  Google Scholar 

  • Van Meer, M.M., Witteveldt, J., and Stouthamer, R., Phylogeny of the Arthropod Endosymbiont Wolbachia Based on the wsp Gene, Insect Mol. Biol, 1999, vol. 8, pp. 399–408.

    Article  PubMed  Google Scholar 

  • Vasilyeva, L.A., Bubenshchikova, E.V., and Ratner, V.A., Heavy Heat Shock Induced Retrotransposon Transposition in Drosophila, Genet. Res., 1999, vol. 74, pp. 111–119.

    Article  PubMed  Google Scholar 

  • Veneti, Z., Clark, M.E., Karr, T.L., et al., Heads or Tails: Host-Parasite Interactions in the Drosophila-Wolbachia System, Appl. Environ. Microbiol., 2004, vol. 70, pp. 5366–5372.

    Article  PubMed  Google Scholar 

  • Virji, M., Evans, D., Hadfield, A., et al., Critical Determinants of Host Receptor Targeting by Neisseria meningitides and Neisseria gonorrhoeae: Identification of Opa Adhesiotopes on the N-Domain of CD66 Molecules, Mol. Microbiol., 1999, vol. 34, pp. 538–551.

    Article  PubMed  Google Scholar 

  • Werren, J.H., Biology of Wolbachia, Ann. Rev. Entomol., 1997, vol. 42, pp. 587–609.

    Article  Google Scholar 

  • Werren, J.H., Windsor, D., and Guo, L., Distribution of Wolbachia among Neotropical Arthropods, Proc. Roy. Soc. London B, 1995a, vol. 262, pp. 197–204.

    Google Scholar 

  • Werren, J.H., Zhang, W., and Guo, L.R., Evolution and Phylogeny of Wolbachia: Reproductive Parasites of Arthropods, Proc. Roy. Soc. Lond. B, 1995b, vol. 261, pp. 55–63.

    Google Scholar 

  • Winans, S.C., Burns, D.L., and Christie, P.J., Adaptation of a Conjugal Transfer System for the Export of Pathogenic Macromolecules, Trends Microbiol., 1996, vol. 4, pp. 64–68.

    Article  PubMed  Google Scholar 

  • Wood, D.W., Setubal, J.C., Kaul, R., et al., The Genome of the Natural Genetic Engineer Agrobacterium tmefaciens C58, Science, 2001, vol. 294, pp. 2317–2323.

    Article  PubMed  Google Scholar 

  • Wu, M., Sun, L.V., Vamathevan, J., et al., Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements, PLoS Biol, 2004, vol. 2, no.3, p. e69.

    Article  PubMed  Google Scholar 

  • Yeo, H.-J. and Waksman, G., Unveiling Molecular Scaffolds of the Type IV Secretion System, J. Bact., 2004, vol. 186, pp. 1919–1926.

    Article  PubMed  Google Scholar 

  • Zakharov, I.A., Bacteria Control Sex Reproduction in Insects, Priroda, 1999, no. 5, pp. 28–34.

  • Zakharov, I.A., Goryacheva, I.I., Shaikevich, E.V., et al., Wolbachia, a New Bacterial Agent Inducing Sex Ratio Changes in Adalia bipunctata L., Genetika, 2000, vol. 36, no.4, pp. 482–486.

    PubMed  Google Scholar 

  • Zakharov, I.K., Mutations and Mutational Process in Natural Populations of Drosophila melanogaster, Doctoral (Biol.) Dissertation, Novosibirsk: In-t tsitologii i genetiki SO RAN, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ontogenez, Vol. 36, No. 4, 2005, pp. 280–291.

Original Russian Text Copyright © 2005 by Markov, Zakharov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, A.V., Zakharov, I.A. Sexual Reproduction of Insects Is Regulated by Cytoplasmic Bacteria. Russ J Dev Biol 36, 230–239 (2005). https://doi.org/10.1007/s11174-005-0038-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11174-005-0038-2

Key words

Navigation