Skip to main content
Log in

Scandium and neodymium dichloride complexes supported by amido-imino ligands: synthesis, structure, reactivity, and catalytic activity in isoprene polymerization

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The exchange reaction of equimolar amounts of the potassium radical anion salt of diazabutadiene [DADMe•−K(THF)n] (1) (DADMe = DippNC(Me)C(Me)NDipp; Dipp = = 2,6-Pri2C6H3) with anhydrous ScCl3 and NdCl3 afforded the dichloride complexes [DippN=C(Me)C(=CH2)NDipp]LnCl2(THF)2 (Ln = Sc (3), Nd (4)) in 75% and 71% yields, respectively. In these complexes, the DADMe ligand exists in the monoanionic amido-imino form. The reaction of [DADMe∸K(THF)n] with ScCl3 is accompanied by the formation of the minor unstable complex [DippNC(Me)=C(Me)NDipp]∸ScCl2(THF)2(2, ∼3% yield) containing the diazabutadiene radical anion ligand. All attempts to alkylate dichloride complexes 3 and 4 with two equivalents of LiCH2SiMe3 (or LiCH2C6H4-o-NMe2) resulted in the transfer of the amido-imino ligand to the Li+ cation giving the complex [{DippN=C(Me)C(=CH2)NDipp}Li]2 (5) in 36–38% yield. Complex 5 forms a dimeric structure through coordination of lithium ions by two nitrogen atoms (amide and imine N atoms) of one DAD ligand and the µ2-imine nitrogen atom of another ligand. Chloride complexes 3 and 4 involved in the two- and three-component catalytic systems (3 or 4)−[Ph3C][B(C6F5)4] (1: 1) and (3 or 4)−AlBui3−[Ph3C][B(C6F5)4] (1: 10: 1) initiate the oligomerization of isoprene (IP) at room temperature and provide the 25–100% conversion of monomer to oligomer ([IP]/[Ln] = 1000). The synthesized oligomer samples have predominantly a trans-1,4 structure (up to 75.6%) and a low number-average molecular weight (Mn = 0.45−1.24•103; Mw/Mn = 1.13–8.99).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Friebe, O. Nuyken, W. Obrecht, Adv. Polym. Sci., 2006, 204, 1; DOI https://doi.org/10.1007/12_094.

    Article  CAS  Google Scholar 

  2. W. Kuran, Coordination Polymerisation of Conjugated Dienes, in Principles of Coordination Polymerization, Wiley, 2001; ISBNs: 0-470-841419.

  3. D. Takeuchi, Stereoselective Polymerization of Conjugated Dienes, in Encyclopedia of Polymer Science and Technology, Wiley, 2013; DOI: https://doi.org/10.1002/0471440264.pst595.

  4. L. S. Baugh, J. A. M. Canich, Stereoselective Polymerization with Single-Site Catalysts, Taylor & Francis, New York, 2008; ISBN 9780367577605.

    Google Scholar 

  5. E. Lauretti, B. Miani, F. Misttrali, Rubber World, 1994, 210, 34; ISSN: 0035-9572.

    CAS  Google Scholar 

  6. J. Zhao, G. N. Ghebremeskel, Rubber Chem. Technol., 2001, 74, 409; DOI: https://doi.org/10.5254/1.3547645.

    Article  CAS  Google Scholar 

  7. Z. Zhang, D. Cui, B. Wang, B. Liu, Y. Yang, Structure and Bonding, in Molecular Catalysis of Rare-Earth Elements, Ed. P. W. Roesky, Springer, Berlin, 2010, 137, 49; DOI: https://doi.org/10.1007/430_2010_16.

    Chapter  Google Scholar 

  8. H. L. Hsleh, G. H. C. Yeh, Ind. Eng. Chem. Prod. Res. Dev., 1986, 25, 456; DOI: https://doi.org/10.1021/i300023a016.

    Article  Google Scholar 

  9. A. Fischbach, F. Perdih, P. Sirsch, W. Scherer, R. Anwander, Organometallics, 2002, 21, 4569; DOI: https://doi.org/10.1021/om0205389.

    Article  CAS  Google Scholar 

  10. A. Fischbach, F Perdih, E. Herdtweck, R. Anwander, Organometallics, 2006, 25, 1626; DOI: https://doi.org/10.1021/om060052i.

    Article  CAS  Google Scholar 

  11. D. M. Roitershtein, A. A. Vinogradov, K. A. Lyssenko, Y. V. Nelyubina, I. V. Anan’ev, I. E. Nifant’ev, V. A. Yakovlev, N. N. Kostitsyna, Organometallics, 2013, 32, 1272; DOI: https://doi.org/10.1021/om301020r.

    Article  CAS  Google Scholar 

  12. D. Li, S. Li, D. Cui, X. Zhang, Organometallics, 2010, 29, 2186; DOI: https://doi.org/10.1021/om100100r.

    Article  CAS  Google Scholar 

  13. K. Lv, D. Cui, Organometallics, 2010, 29, 2987; DOI: https://doi.org/10.1021/om1002039.

    Article  CAS  Google Scholar 

  14. D. M. Lyubov, V. Yu. Rad’kov, A. O. Tolpygin, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Russ. Chem. Bull., 2015, 64, 618; DOI: https://doi.org/10.1007/s11172-015-0908-4.

    Article  CAS  Google Scholar 

  15. W. Gao, D. Cui, J. Am. Chem. Soc., 2008, 130, 4984; DOI: https://doi.org/10.1021/ja711146t.

    Article  CAS  PubMed  Google Scholar 

  16. A. O. Tolpygin, O. A. Linnikova, T. A. Kovylina, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Russ. Chem. Bull., 2019, 68, 32; DOI: https://doi.org/10.1007/s11172-019-2412-8.

    Article  CAS  Google Scholar 

  17. R. Tanaka, Y. Nakayama, T. Shiono, Organometallics, 2020, 39, 10, 1855; DOI: https://doi.org/10.1021/acs.organomet.0c00112.

    Article  Google Scholar 

  18. T. Jia, Shu-yun Xu, Li-cheng Huang, W. Gao, Polyhedron, 2018, 145, 182; DOI: https://doi.org/10.1016/j.poly.2018.02.010.

    Article  CAS  Google Scholar 

  19. Y. Pan, T. Xu, Guan-Wen Yang, K. Jin, X.-Bing Lu, Inorg. Chem., 2013, 52, 2802; DOI: https://doi.org/10.1021/ic300976p.

    Article  CAS  PubMed  Google Scholar 

  20. A. A. Trifonov, Russ. Chem. Rev., 2007, 76, 1122; DOI: https://doi.org/10.1070/RC2007v076n11ABEH003693.

    Article  Google Scholar 

  21. A. A. Trifonov, Coord. Chem. Rev., 2010, 254, 1327; DOI: https://doi.org/10.1016/j.ccr.2010.01.008.

    Article  CAS  Google Scholar 

  22. W. E. Piers, D. J. H. Emslie, Coord. Chem. Rev., 2002, 131; DOI: https://doi.org/10.1016/S0010-8545(02)00016-4.

  23. M. N. Bochkarev, L. N. Zacharov, G. S. Kalinina, Organoderivatives of Rare Earth Elements, Kluwer, Dordrecht, 1995, 532 p; ISBN-13: 978-9401041614.

    Book  Google Scholar 

  24. E. N. Nikolaevskaya, N. O. Druzhkov, M. A. Syroeshkin, M. P. Egorov, Coord. Chem. Rev., 2020, 417, 213353; DOI: https://doi.org/10.1016/j.ccr.2020.213353.

    Article  CAS  Google Scholar 

  25. T. V. Mahrova, G. K. Fukin, A. V. Cherkasov, A. A. Trifonov, N. Ajellal, J.-F. Carpentier, Inorg. Chem., 2009, 48, 4258; DOI: https://doi.org/10.1021/ic802427f.

    Article  CAS  PubMed  Google Scholar 

  26. T. V. Makhrova, G. K. Fukin, A. V. Cherkasov, A. A. Trifonov, Russ. Chem. Bull., 2008, 57, 2285; DOI: https://doi.org/10.1007/s11172-008-0322-2.

    Article  CAS  Google Scholar 

  27. T. K. Panda, H. Kaneko, K. Pal, H. Tsurugi, K. Mashima, Organometallics, 2010, 29, 2610; DOI: https://doi.org/10.1021/om1003144.

    Article  CAS  Google Scholar 

  28. J. Long, A. O. Tolpygin, A. V. Cherkasov, K. A. Lyssenko, Y. Guari, J. Larionova, A. A. Trifonov, Organometallics, 2019, 38 (4), 748; DOI: https://doi.org/10.1021/acs.organomet.8b00901.

    Article  Google Scholar 

  29. J. Long, A. O. Tolpygin, A. V. Cherkasov, K. A. Lyssenko, Y. Guari, J. Larionova, A. A. Trifonov, CrystEngComm, 2020, 22, 4260; DOI: https://doi.org/10.1039/d0ce00611d.

    Article  CAS  Google Scholar 

  30. J. Long, A. O. Tolpygin, A. V. Cherkasov, K. A. Lyssenko, Y. Guari, J. Larionova, A. A. Trifonov, Dalton Trans., 2020, 49, 11890; DOI: https://doi.org/10.1039/D0DT02305A.

    Article  CAS  PubMed  Google Scholar 

  31. A. A. Trifonov, I. A. Borovkov, E. A. Fedorova, G. K. Fukin, J. Larionova, N. O. Druzhkov, V. K. Cherkasov, Chem. Eur. J., 2007, 13, 4981; DOI: https://doi.org/10.1002/chem.200601481.

    Article  CAS  PubMed  Google Scholar 

  32. A. A. Trifonov, Eur. J. Inorg. Chem., 2007, 3151; DOI: https://doi.org/10.1002/ejic.200601209.

  33. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1. DOI: https://doi.org/10.1039/P298700000S1.

    Article  Google Scholar 

  34. A. A. Kissel, D. M. Lyubov, T. V. Mahrova, G. K. Fukin, A. V. Cherkasov, T. A. Glukhova, D. Cui, A. A. Trifonov, Dalton Trans., 2013, 42, 9211. DOI: https://doi.org/10.1039/C3DT33108C.

    Article  CAS  PubMed  Google Scholar 

  35. M. Xue, R. Jiao, Y. Zhang, Y. Yao, Q. Shen, Eur. J. Inorg. Chem., 2009, 4110; DOI: https://doi.org/10.1002/ejic.200900313.

  36. H. Schumann, M. Hummert, A. N. Lukoyanov, V. A. Chudakova, I. L. Fedushkin, Z. Naturforsch, 2007, 62b, 1107–1111; DOI: https://doi.org/10.1515/znb-2007-0901.

    Article  Google Scholar 

  37. A. A. Trifonov, B. G. Shestakov, K. A. Lyssenko, J. Larionova, G. K. Fukin, A. V. Cherkasov, Organometallics, 2011, 30, 4882; DOI: https://doi.org/10.1021/om200429h.

    Article  CAS  Google Scholar 

  38. E. K. Cope-Eatough, F. S. Mair, R. G. Pritchard, J. E. Warren, R. J. Woods, Polyhedron, 2003, 22, 1447; DOI: https://doi.org/10.1016/S0277-5387(03)00123-2.

    Article  CAS  Google Scholar 

  39. J. Hong, L. Zhang, K. Wang, Z. Chen, L. Wu, X. Zhou, Organometallics, 2013, 32, 7312–7322; DOI: https://doi.org/10.1021/om400787j.

    Article  CAS  Google Scholar 

  40. I. L. Fedushkin, N. M. Khvoinova, A. V. Piskunov, G. K. Fukin, M. Hummert, H. Schumann, Russ. Chem. Bull., 2006, 55, 722; DOI: https://doi.org/10.1007/s11172-006-0320-1.

    Article  CAS  Google Scholar 

  41. D. A. Evans, A. H. Cowley, J. Am. Chem. Soc., 2012, 134, 15672; DOI: https://doi.org/10.1021/ja307050r.

    Article  CAS  PubMed  Google Scholar 

  42. G. G. Skvortsov, A. O. Tolpygin, D. M. Lyubov, N. M. Khamaletdinova, A. V. Cherkasov, K. A. Lyssenko, A. A. Trifonov, Russ. Chem. Bull., 2016, 65, 2832; DOI: https://doi.org/10.1007/s11172-016-1664-9.

    Article  CAS  Google Scholar 

  43. S. Aoshima, S. Kanaoka, Chem.Rev., 2009, 109, 5245; DOI: https://doi.org/10.1021/cr900225g.

    Article  CAS  PubMed  Google Scholar 

  44. S. V. Kostjuk, RSC Adv., 2015, 5, 13125; DOI: https://doi.org/10.1039/c4ra15313h.

    Article  CAS  Google Scholar 

  45. S. Ouardad, A. Deffieux, F. Peruch, Pure Appl. Chem., 2012, 84 (10), 2065; DOI: https://doi.org/10.1351/PAC-CON-12-02-05.

    Article  Google Scholar 

  46. Y. H. Kim, T. H. Kim, B. Y. Lee, Organometallics, 2002, 21, 3082; DOI: https://doi.org/10.1021/om020251b.

    Article  CAS  Google Scholar 

  47. M. D. Taylor, C. P. Carter, J. Inorg. Nucl. Chem., 1962, 24, 387; DOI: https://doi.org/10.1016/0022-1902(62)80034-7.

    Article  CAS  Google Scholar 

  48. M. Svoboda, H. T. Dieck, J. Organomet. Chem., 1980, 191, 321; DOI: https://doi.org/10.1016/S0022-328X(00)88576-9.

    Article  CAS  Google Scholar 

  49. S. J. Lyle, M. M. Rahman, Talanta, 1953, 10, 1177.

    Article  Google Scholar 

  50. Bruker, APEX3; SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2018.

    Google Scholar 

  51. L. Krause, R. Herbst-Irmer, G. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. G. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  53. G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (Project No. 20-73-10037). The X-ray diffraction, NMR, EPR, and IR spectroscopy studies of complexes 3–5, gel permeation chromatography and mass–spectrometric studies of polymer samples were performed using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” with the financial support of the grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment” (unique identifier RF—2296.61321X0017, agreement number 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Trifonov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 11, pp. 2655–2666, November, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolpygin, A.O., Mikhailychev, A.D., Kovylina, T.A. et al. Scandium and neodymium dichloride complexes supported by amido-imino ligands: synthesis, structure, reactivity, and catalytic activity in isoprene polymerization. Russ Chem Bull 72, 2655–2666 (2023). https://doi.org/10.1007/s11172-023-4070-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4070-0

Key words

Navigation