Skip to main content
Log in

Electrochemically induced decomposition of benzopinacol

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Chemical bond cleavage by electron transfer to an organic molecule is a typical electro-initiated reaction; however, there are few examples of carbon—carbon bond cleavage. In this study, using cyclic voltammetry, chronoamperometry, controlled-potential electrolysis with chromatographic characterization of products, and ab initio quantum chemical calculations, it was shown that the electrochemical reduction of benzopinacol (1,1,2,2-tetra-phenyl-1,2-ethanediol) in aprotic solvents (DMF, MeCN, THF) in the presence of Bu4NClO4 as a supporting electrolyte is accompanied by cleavage of the central C–C bond, which follows the electron transfer. This initiates a chain reaction giving equimolar amounts of benzophenone and benzhydrol (diphenylmethanol). The decomposition is inhibited in the presence of medium-strength proton donors (phenol, benzoic and acetic acids, etc.) in the solution. A similar effect is attained by the addition of divalent metal salts, in particular Mg(ClO4)2. According to the results of quantum chemical calculations, the effective C–C bond cleavage in the benzopinacol radical anion to give a radical and an anion is due to a very low energy barrier (1.7 kcal mol−1) and is very thermodynamically favorable (ΔG°298 = −16.6 kcal mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Studer, D. P. Curran, Nature Chem., 2014, 6, 765–773; DOI: https://doi.org/10.1038/nchem.2031.

    Article  CAS  Google Scholar 

  2. M. A. Syroeshkin, F. Kuriakose, E. A. Saverina, V. A. Timofeeva, M. P. Egorov, I. V. Alabugin, Angew. Chem., Int. Ed., 2019, 58, 5532–5550; DOI: https://doi.org/10.1002/anie.201807247.

    Article  CAS  Google Scholar 

  3. A. I. Rusakov, A. S. Mendkovich, V. P. Gul’tyai, V. Yu. Orlov, Struktura i reaktsionnaya sposobnost’organicheskikh anion-radikalov [Structure and Reactivity of Organic Radical Anions], Mir, Moscow, 2005, 294 pp. (in Russian).

    Google Scholar 

  4. V. A. Balycheva, A. Ya. Akyeva, E. A. Saverina, P. G. Shangin, I. V. Krylova, V. A. Korolev, M. P. Egorov, I. V. Alabugin, M. A. Syroeshkin, Russ. Chem. Bull., 2022, 71, 1614–1625; DOI: https://doi.org/10.1007/s11172-022-3570-7.

    Article  CAS  Google Scholar 

  5. A. S. Mendkovich, M. A. Syroeshkin, A. I. Rusakov, in Vysokoreaktsionnye intermediaty [Highly Reactive Intermediates], Ed. M. P. Egorov, M. Ya. Mel’nikov, Izd. Moskovskogo Univ., Moscow, 2012, p. 41–66 (in Russian).

    Google Scholar 

  6. A. Houmam, Chem. Rev., 2008, 108, 2180–2237; DOI: https://doi.org/10.1021/cr068070x.

    Article  CAS  PubMed  Google Scholar 

  7. D. C. Magri, M. S. Workentin, Org. Biomol. Chem., 2008, 6, 3354–3361; DOI: https://doi.org/10.1039/B809356C.

    Article  CAS  PubMed  Google Scholar 

  8. D. C. Magri, M. S. Workentin, Chem. Eur. J., 2008, 14, 1698–1709; DOI: https://doi.org/10.1002/chem.200701740.

    Article  CAS  PubMed  Google Scholar 

  9. D. L. B. Stringle, R. N. Campbell, M. S. Workentin, Chem. Commun., 2003, 1246–1247; DOI: https://doi.org/10.1039/B301909H.

  10. D. L. B. Stringle, D. C. Magri, M. S. Workentin, Chem. Eur. J., 2010, 16, 178–188; DOI: https://doi.org/10.1002/chem.200902023.

    Article  CAS  PubMed  Google Scholar 

  11. M. A. Syroeshkin, I. B. Krylov, A. M. Hughes, I. V. Alabugin, D. V. Nasybullina, M. Yu. Sharipov, V. P. Gultyai, A. O. Terent’ev, J. Phys. Org. Chem., 2017, 30, e3744; DOI: https://doi.org/10.1002/poc.3744.

    Article  Google Scholar 

  12. A. S. Mendkovich, M. A. Syroeshkin, D. V. Ranchina, M. N. Mikhailov, V. P. Gultyai, A. I. Rusakov, J. Electroanal. Chem., 2014, 728, 60–65; DOI: https://doi.org/10.1016/j.jelechem.2014.06.014.

    Article  CAS  Google Scholar 

  13. A. S. Mendkovich, M. A. Syroeshkin, D. V. Nasybullina, M. N. Mikhailov, V. P. Gultyai, A. I. Rusakov, Electrochim. Acta, 2017, 238, 9–20; DOI: https://doi.org/10.1016/j.electacta.2017.03.174.

    Article  CAS  Google Scholar 

  14. D. W. Borhani, F. D. Greene, J. Org. Chem., 1986, 51, 1563–1570; DOI: https://doi.org/10.1021/jo00359a035.

    Article  CAS  Google Scholar 

  15. C. Dell’Erba, A. Houmam, M. Novi, G. Petrillo, J. Pinson, J. Org. Chem., 1993, 58, 2670–2677; DOI: https://doi.org/10.1021/jo00062a007.

    Article  Google Scholar 

  16. S. Antonello, K. Daasbjerg, H. Jensen, F. Taddei, F. Maran, J. Am. Chem. Soc., 2003, 125, 14905–14916; DOI: https://doi.org/10.1021/ja036380g.

    Article  CAS  PubMed  Google Scholar 

  17. E. M. Hamed, H. Doai, C. K. McLaughlin, A. Houmam, J. Am. Chem. Soc., 2006, 128, 6595–6604; DOI: https://doi.org/10.1021/ja056730u.

    Article  CAS  PubMed  Google Scholar 

  18. A. S. Mendkovich, M. A. Syroeshkin, D. V. Nasybullina, M. N. Mikhailov, V. P. Gultyai, M. N. Elinson, A. I. Rusakov, Electrochim. Acta, 2016, 191, 962–973; DOI: https://doi.org/10.1016/j.electacta.2016.01.127.

    Article  CAS  Google Scholar 

  19. A. S. Mendkovich, D. V. Ranchina, M. A. Syroeshkin, D. V. Demchuk, M. N. Mikhailov, M. N. Elinson, V. P. Gul’tyai, A. I. Rusakov, Acta Chim. Slov., 2014, 61, 246–254; https://acta-arhiv.chem-soc.si/61/61-2-246.pdf.

    CAS  PubMed  Google Scholar 

  20. A. S. Mendkovich, M. A. Syroeshkin, K. R. Mitina, M. N. Mikhailov, V. P. Gultyai, V. M. Pechennikov, Mendeleev Commun., 2017, 27, 580–582; DOI: https://doi.org/10.1016/j.mencom.2017.11.014.

    Article  CAS  Google Scholar 

  21. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73–78; DOI: https://doi.org/10.1002/wcms.81.

    Article  CAS  Google Scholar 

  22. F. Neese, WIREs Comput. Mol. Sci., 2022, 12, e1606; DOI: https://doi.org/10.1002/wcms.1606.

    Article  Google Scholar 

  23. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158–6170; DOI: https://doi.org/10.1063/1.478522.

    Article  CAS  Google Scholar 

  24. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305; DOI: https://doi.org/10.1039/B508541A.

    Article  CAS  PubMed  Google Scholar 

  25. F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys., 2009, 356, 98–109; DOI: https://doi.org/10.1016/j.chemphys.2008.10.036.

    Article  CAS  Google Scholar 

  26. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065; DOI: https://doi.org/10.1039/B515623H.

    Article  CAS  PubMed  Google Scholar 

  27. N. G. Connelly, W. E. Geiger, Chem. Rev., 1996, 96, 877–910; DOI: https://doi.org/10.1021/cr940053x.

    Article  CAS  PubMed  Google Scholar 

  28. N. G. Tsierkezos, J. Solution Chem., 2007, 36, 1301–1310; DOI: https://doi.org/10.1007/s10953-007-9188-4.

    Article  CAS  Google Scholar 

  29. D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals. 2nd Ed., Pergamon Press, Oxford, 1980, 568 pp.

    Google Scholar 

  30. E. P. Grimsrud, G. Caldwell, S. Chowdhury, P. Kebarle, J. Am. Chem. Soc., 1985, 107, 4627–4634; DOI: https://doi.org/10.1021/ja00302a005.

    Article  CAS  Google Scholar 

  31. E. C. M. Chen, W. E. Wentworth, J. Phys. Chem., 1983, 87, 45–49; DOI: https://doi.org/10.1021/j100224a013.

    Article  CAS  Google Scholar 

  32. C. Huh, C. H. Kang, H. W. Lee, H. Nakamura, M. Mishima, Y. Tsuno, H. Yamataka, Bull. Chem. Soc. Jpn, 1999, 72, 1083–1091; DOI: https://doi.org/10.1246/bcsj.72.1083.

    Article  CAS  Google Scholar 

  33. M. P. Egorov, V. V. Jouikov, E. N. Nikolaevskaya, M. A. Syroeshkin, in Organogermanium Compounds: Theory, Experiment, and Applications, Ed. V. Ya. Lee, John Wiley & Sons, Inc., 2023, pp. 507–559; DOI: https://doi.org/10.1002/9781119613466.ch12.

  34. M. A. Syroeshkin, M. N. Mikhailov, A. S. Mendkovich, A. I. Rusakov, Russ. Chem. Bull., 2009, 58, 41–46; DOI: https://doi.org/10.1007/s11172-009-0006-6.

    Article  CAS  Google Scholar 

  35. K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys., 1977, 66, 2153–2156; DOI: https://doi.org/10.1063/1.434152.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (Project No. 20-73-10234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Syroeshkin.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 11, pp. 2630–2636, November, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balycheva, V.A., Shangin, P.G., Krylova, I.V. et al. Electrochemically induced decomposition of benzopinacol. Russ Chem Bull 72, 2630–2636 (2023). https://doi.org/10.1007/s11172-023-4067-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4067-8

Key words

Navigation